We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for soft.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

soft(cae) - List of Manufacturers, Suppliers, Companies and Products

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

soft Product List

361~375 item / All 407 items

Displayed results

Optimization of the shape of the volute and diffuser of a centrifugal compressor.

For shape creation, we use CAESES, and for mesh model creation and CFD analysis, we use products from NUMECA!

At the Technical University of Darmstadt in Germany (Institute of Gas Turbines and Aerospace Propulsion), research was conducted on the automatic optimization of the volute of centrifugal compressors and vane diffusers. This project was carried out in collaboration with NUMECA, a German company, and Kompressorenbau Bannewitz GmbH (KBB), a turbo machinery manufacturer. CAESES was used for shape creation, while NUMECA's products were utilized for mesh model creation and CFD analysis. In CAESES, a parametric model was created that allowed for variations in the cross-sectional shape and area distribution of the volute. For the diffuser, a non-axisymmetric design was implemented, enabling quick shape transformations by varying the misalignment angle, blade twist, chord length, pitch, and rotation through a parametric model. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • 遠心圧縮機のボリュートとディフューザーの形状最適化2.png
  • Structural Analysis
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization and parametric modeling software 'CAESES'

Enables superior product design! Equipped with 3D parametric modeling and morphing features.

"CAESES" is optimization and parametric modeling software used in various fields such as shipbuilding, turbo machinery, aerospace, and automotive. It supports 3D full parametric modeling, model deformation control, checking functions based on various constraints, connections to simulation software, optimization, and result post-processing. Through a parametric optimization approach, it enables better product design. 【Features】 ■ 3D parametric modeling and morphing functions ■ Integration with simulation software ■ Optimization algorithms and data analysis/post-processing modules *For more details, please refer to the PDF document or feel free to contact us.

  • 3D CAD

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization Case of Centrifugal Compressor Impeller Using CAESES

By constructing a parametric model, it is also possible to optimize the entire compressor model!

Centrifugal compressors are compact yet feature a high pressure ratio, and they are widely used in systems in the fields of aircraft and marine vessels. Impeller design is a crucial design aspect of centrifugal compressors and has a significant impact on compressor performance. In this case, we conducted automatic performance optimization using CAESES combined with CFD tools on an existing centrifugal compressor impeller model. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • CAESESによる遠心圧縮機インペラの最適化事例2.png
  • CAESESによる遠心圧縮機インペラの最適化事例3.png
  • CAESESによる遠心圧縮機インペラの最適化事例4.png
  • CAESESによる遠心圧縮機インペラの最適化事例7.gif
  • CAESESによる遠心圧縮機インペラの最適化事例8.gif
  • CAESESによる遠心圧縮機インペラの最適化事例9.gif
  • CAESESによる遠心圧縮機インペラの最適化事例10.gif
  • Centrifugal concentrator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Reduction of CO2 emissions through hull shape optimization.

Introducing how much the annual CO2 emissions have been reduced by utilizing CAESES!

FRIENDSHIP SYSTEMS, the developer of CAESES, has contributed to the reduction of energy consumption and CO2 emissions not only through support for the improvement of turbo machinery and engine-related parts but also for vessels. This article will introduce the experiences in design and improvement for CO2 emission reduction and how much annual CO2 emissions have been reduced by utilizing CAESES. *For detailed content of the article, please refer to the related link. For more information, feel free to download the PDF or contact us.

  • 船体形状最適化によるCO2排出量の削減2.png
  • 船体形状最適化によるCO2排出量の削減3.jpg
  • Other analyses
  • Modeler

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Example] Efficient Optimization through Morphing 'CAESES'

Only the modified parts of the existing shape are defined by parameters! Various shapes can be created.

We will introduce efficient optimization using morphing with "CAESES," which we provide. It is mainly used in the shipbuilding and maritime industry, but the majority of users focus on full parametric modeling. In morphing (partial parametric modeling), the deformation of imported existing geometry is performed. Therefore, only the modified parts of the existing shape are defined by parameters, allowing for the creation of various shapes. 【Previous Morphing Features】 ■ Shift transformations ■ Lackenby shift ■ Free-Foam deformation (FFD) ■ Cartesian shifts ■ Spot transformations *For more details, please download the PDF or feel free to contact us.

  • 1.PNG
  • 2.PNG
  • 3.PNG
  • 4.PNG
  • 5.PNG
  • 6.PNG
  • 7.PNG
  • 8.PNG
  • 9.PNG
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Design of a centrifugal water pump

Implementing the design process of a centrifugal water pump that maximally utilizes the capabilities of CAESES!

Centrifugal pumps are commonly used in industrial and household applications because their design, manufacturing, and maintenance are relatively simple. They also have the advantage of being efficient and easily adaptable to various sizes. Students from the Department of Transportation Systems at the Technical University of Berlin implemented the design process of a centrifugal water pump that maximizes the capabilities of CAESES as part of an internship project at FRIENDSHIP SYSTEMS, the developer of CAESES. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 遠心式ウォーターポンプの設計2.png
  • 遠心式ウォーターポンプの設計3.png
  • 遠心式ウォーターポンプの設計4.png
  • Structural Analysis
  • Other pumps

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the rear wing shape

Utilizing CAESES for the optimization of the rear wing shape attached to racing cars!

FRIENDSHIP SYSTEMS, the developer of CAESES, has actively supported student racing teams such as FaSTTUBe and the Ryerson Formula Racing Team. Among these, CAESES was utilized for the optimization of the rear wing shape of racing cars in the Formula Student Germany (FSG) contest, which gathers students from all over Germany. This case study will introduce the optimization of the rear wing and its results. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*

  • 9-2.png
  • 9-3.gif
  • 9-4.png
  • 9-5.png
  • 9-6.png
  • 9-7.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Automatic modeling of solid data for FEM analysis.

The ultimate goal is to provide models with CAESES in one click and at high speed!

This article introduces FRIENDSHIP SYSTEMS, the developer of the optimization software CAESES, and their modeling request from MTU Friedrichshafen. MTU Friedrichshafen designs large turbochargers for diesel engines and uses CAESES for the design of engine components such as volutes. Some of their impeller designs are created using NUMECA Autoblade, and these models are exported in ASCII format (.vda). This format essentially includes point data for the profiles of the hub and shroud in the meridional direction, as well as the blade shapes. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 構造解析用ソリッドデータの自動モデリング2.png
  • 構造解析用ソリッドデータの自動モデリング3.png
  • 構造解析用ソリッドデータの自動モデリング4.png
  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Aerodynamic optimization of vertical axis wind turbines

CAESES can perform optimization calculations and support users in their design tasks!

In this case, we will introduce the optimization calculations for vertical axis wind turbines. FRIENDSHIP SYSTEMS, the developer of the optimization design system CAESES, investigated the aerodynamic behavior of vertical axis wind turbines using the mesh generation software Pointwise. As a first initiative, FRIENDSHIP SYSTEMS connected the automatic mesh generation by Pointwise with CAESES and executed a method to optimize vertical axis wind turbines in 2D using various tools, including analysis software. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 垂直軸風力タービンの空力最適化2.png
  • 垂直軸風力タービンの空力最適化3.png
  • 垂直軸風力タービンの空力最適化4.png
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

SAE ARP4761 compliant module

We support the safety assessment process required by SAE ARP4761!

The safety assessment-related module of the Reliability Workbench (RWB) has functions to support the safety assessment process required by SAE ARP 4761. By using this set of functions, it becomes possible to conduct SSA (System Safety Assessment) and FHA (Functional Hazard Assessment).

  • Other process controls

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Propeller design of Caterpillar Propulsion

Execute tasks such as setting up the blade model and generating individual dynamic 2D drawings!

Caterpillar Propulsion has implemented CAESES for the design of propeller blades. When we started on a project basis, the overall idea was to implement it as a workbench that integrates and controls mesh generation and simulation software. At the same time, CAESES needs to provide a fully parametric 3D blade design that allows Caterpillar Propulsion's engineers to reconstruct the definitions of existing blades and profiles, while also requiring high flexibility to try out entirely new designs. *For more details, please refer to the related link. For further information, you can download the PDF or feel free to contact us.*

  • Caterpillar Propulsionのプロペラ設計2.png
  • Mechanical Design

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Mobile Utilization AE MonitorEX + Mobile

Utilizing tablets for an operational monitoring system that perfectly fits needs with standard features plus customization.

This system was developed by our company using the SCADA software "AVEVA Edge," allowing for a small start. Additionally, short-term development and expansion are easy. It is possible to build a system that fits needs just right through standard features of each application plus customization. ● AE-MonitorEX + Mobile: Expanding the above features and target processes Virtual process progress management.

  • Instrumentation and Control Systems
  • Process Control System
  • Other production management systems

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Torque converter shape optimization

CAESES provides beneficial results across various fields, regardless of the products in question!

A torque converter for automobiles is a type of fluid coupling used in vehicles equipped with automatic transmissions to transmit rotational force from the engine to the drive shaft. Designers of torque converters work to minimize cavitation within the device and ensure good flow behavior of the transmission oil, aiming to maximize efficiency and torque ratio at high speeds. CAESES enables the modeling of such complex shapes and can build an optimization system that incorporates shape data into analysis software. By connecting CFD analysis software and proprietary CFD codes to CAESES, it analyzes flow behavior for each designed shape during optimization calculations and provides users with the optimal shape based on constraints. *For more detailed information, please refer to the related links. For further details, feel free to download the PDF or contact us.*

  • 13-2.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of globe valve shape

The purpose is to improve and investigate the performance of globe valves, connecting the cloud-based CFD solver SimScale with CAESES!

CAESES has been conducting optimization calculations for various types of valves and has implemented projects in collaboration with various companies. In this context, we would like to introduce one of the newly conducted projects, "Shape Optimization of a Globe Valve." This project was carried out in cooperation with GEMÜ Gebr. Müller Apparatebau, a German valve manufacturer and a global company specializing in aseptic valves, and SimScale, a leading engineering simulation company. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • グローブバルブの形状最適化2.png
  • グローブバルブの形状最適化3.png
  • グローブバルブの形状最適化4.png
  • グローブバルブの形状最適化5.png
  • グローブバルブの形状最適化6.png
  • グローブバルブの形状最適化7.png
  • グローブバルブの形状最適化8.png
  • Structural Analysis
  • Other CAD
  • valve

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the mixer

The results obtained show that the mixing time is 10% to 20% shorter than that of a standard industrial mixer!

The mixer is a widely used device, and its size and shape vary depending on the working environment. The parametric modeling in CAESES makes it easy to adjust its performance and enables optimization. By modeling in CAESES, structural changes can be adjusted by parameters, allowing for the easy acquisition of mixers suitable for various working environments. *For more detailed information, you can view it through the related links. For more details, please download the PDF or feel free to contact us.*

  • 攪拌機の最適化2.jpg
  • 攪拌機の最適化3.png
  • Mixer

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration