We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Analysis software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Analysis software×くいんと - List of Manufacturers, Suppliers, Companies and Products

Analysis software Product List

16~30 item / All 32 items

Displayed results

Theory of OPTISHAPE-TS Compliance Sensitivity Part 1

About problems with two-dimensional design variables! Introducing the linear elastic problem of a cantilever beam as an example.

In the previous article, we discussed compliance in linear elastic problems. By the way, some of you may have heard that "the sensitivity of compliance is the strain energy," but how is this derived? Therefore, starting from this time, I would like to take a few sessions to look at the derivation of compliance sensitivity. Please feel free to download and take a look. [Contents] ■ Episode 22: Sensitivity of Compliance Part 1 "Problems with Two-Dimensional Design Variables" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Column] The Theory of OPTISHAPE-TS: Lagrange Multiplier Method

An explanation of the general concept of the Lagrange multiplier method through a simple problem! Introduction to a technical column.

The discussion about deriving the sensitivity of compliance began from the previous article. This time, I would like to take a break from the derivation of sensitivity and explain the Lagrange multiplier method itself. Please feel free to download and take a look. [Contents] ■ Episode 24: Lagrange Multiplier Method *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Theory of OPTISHAPE-TS Compliance Sensitivity Part 5

An approach based on the variational method! Deriving the sensitivity with respect to the function representing the cross-sectional area.

Last time, we discussed how to define the Lagrange function to determine the sensitivity of compliance in a one-dimensional cantilever beam, using design variables represented as a function of cross-sectional area. This time, let's look at the approach based on the calculus of variations to derive the stationary conditions and the derivatives with respect to the cross-sectional area. Please feel free to download and take a look. [Contents] ■ Episode 27: Sensitivity of Compliance Part 5 "Derivation of Sensitivity with Respect to the Function Representing Cross-Sectional Area" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Shape optimization to increase resonance frequency ★ Detailed materials available

Control the natural frequency while considering the MAC value. Utilize parallelization to handle large-scale models in a short time.

By changing the shape, we improve the natural frequency and resonance frequency. Additionally, we have added conditions to allow for die-cutting in accordance with manufacturing requirements. In recent years, the performance of PCs has increased, and the scale of models required for finite element analysis has also grown larger. In such cases, significant time reductions can be achieved by utilizing parallelization. This time, we performed shape optimization of a large-scale model exceeding one million nodes using parallelization. 【Analysis Model】 ■ Elements: Tetrahedral second-order elements ■ Number of elements: 653,931 ■ Number of nodes: 1,026,428 <Related Keywords> - Rib shape - Matching considering MAC values - Control of eigenvalues *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis
  • Contract Analysis
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Image-based structural analysis software "VOXELCON"

Easy modeling of any shape! 3D editing, analysis, measurement, and material property calculation of CT images based on images.

"VOXELCON" is a powerful image-based structural analysis software that directly models and utilizes CT images obtained from physical objects and STL data from CAD for analysis and measurement. It is equipped with a variety of reverse engineering functions as structural analysis and measurement capabilities. It is effective in various scenarios, from cast products to composite materials, and from the design stage to quality control. Additionally, voxel segmentation is ultra-fast, capable of creating a mesh of 100 million voxels in just a few seconds, and is extremely robust, with very few failures. 【Features】 ■ Direct use of physical data ■ Various reverse engineering functions ■ Ultra-fast and robust voxel segmentation ■ Large-scale solver included ■ Cutting-edge multi-scale analysis *For more details, please refer to the related links or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Example] Shape optimization of table legs considering meat thickness.

Lightweight design considering the generated stress and the thickness of the member. Here is an example of applying shape optimization to the table leg.

Here, we will perform shape optimization on the table legs, minimizing the volume while ensuring that the Mises stress does not exceed a specified value. In shape optimization, we can optimize based on Mises stress or maximum principal stress. Additionally, by applying symmetry conditions, we will conduct the analysis using a quarter model of the entire structure. *For more details, please refer to the related links or feel free to contact us.*

  • Structural Analysis
  • Other analyses
  • Contract Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Analysis of Complex Shape Models - Reducing Labor Costs -

"VOXELCON" is a structural analysis software that directly models STL data from CT and CAD for analysis and measurement purposes.

When creating an analysis model by meshing a detailed CAD model created as design data, the following issues can be noted: - The number of elements becomes enormous, leading to high computational costs. - Meshing is difficult and requires the expertise and techniques of experienced individuals. Additionally, the analysis results depend on the meshing. - In some cases, automatic element meshing is not possible. However, even if you try to analyze using a simplified shape... - The effort required for simplification is significant. - Evaluating the impact of simplification on analysis accuracy is cumbersome. These issues can be resolved by VOXELCON's voxel mesh generation technology. Even complex shapes can be easily converted into analysis models, thereby reducing the human labor required for analysis. *For more details, please refer to the related links or feel free to contact us.*

  • Structural Analysis
  • Other analyses
  • Contract Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Shape Optimization for Equalizing Reaction Forces ★ Detailed Materials Available

Consider "reaction force" as a manufacturing requirement! Reduce the reaction force values at points with high fixed-point reaction forces!

We will perform non-parametric shape optimization to ensure that the reaction forces at the bolted fixed points are equal, and we will introduce a case that reduces the reaction force values at locations with high fixed point reaction forces. The analysis model completely fixes four bolted points and sets a load of 1,000N in the Z-axis direction. In the evaluation of the initial shape, the reaction force value at the lower left part was the highest, reaching 415.1N. 【Case Overview】 ■Optimization Conditions - Objective Function: Volume Minimization - Constraints: Reaction force of 250N in the Z-axis direction at each fixed point, 3.0 times the compliance of the initial shape - Shape Variation Restrictions (constraints related to manufacturing requirements): Minimum thickness, maintaining the plane of the Z component on one side For further details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis
  • Contract Analysis
  • simulator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Example] Shape optimization considering stress

Using "OPTISHAPE-TS"! Introducing optimization cases with different stress constraints based on model parts.

In strength design, stress serves as an important guideline. When conducting strength assessments based on stress, it is necessary to vary the evaluation stress values according to different parts, rather than relying solely on the maximum value. In such cases, by specifying constraint stress values for each region, it is possible to obtain an optimal shape that constrains stress at multiple evaluation points and all locations. This time, we will introduce an optimization case with different stress constraints applied to various parts of the model. [Contents] ■ Overview ■ Analysis Model ■ Optimization Conditions ■ Results ■ Discussion *Detailed information about the case can be viewed through the related links. For more details, please feel free to contact us.

  • Structural Analysis
  • Contract Analysis
  • Stress Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Accuracy Verification of Displacement and Temperature Using Finite Covering Method (FCM)

I will introduce the issues of voxel analysis and a case study applying FCM as a solution!

The displacement solution of static stress analysis or the temperature solution of steady-state heat conduction analysis rarely produces errors as long as the shape is represented accurately; however, there are problems where the errors can become significant. When the original shape does not match the voxel pitch, discrepancies in the shape occur. Therefore, to achieve better accuracy in the analysis, it is necessary to refine the mesh, which increases the model size. Here, we will introduce a case study applying FCM as a solution to this issue. [Contents] ■ Overview - Issues with voxel analysis ■ Analysis Model - Boundary conditions ■ Analysis Results - Static stress analysis / Steady-state heat conduction analysis *Detailed information about the case study can be viewed through the related links. For more details, please feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Example: Injection Molding - Reducing clamping force to downsize the molding machine.

We will collaborate with 3D TIMON to explore gate positions that can be injected even with small molding machines, thereby reducing production costs.

Optimizing molding conditions parametrically in resin flow analysis can be relatively easily achieved, but automatically changing the cavity shape and runner layout while optimizing is challenging. To facilitate these optimizations, we developed "AMDESS for 3D TIMON" in collaboration with Toray Engineering Co., Ltd. Here, we present a case study of optimizing the gate position to minimize clamping force while automatically re-modeling the runner when changing the gate position. [Contents] ■ Overview ■ Analysis Model ■ Optimization Conditions ■ Results ■ Discussion *Detailed information about the case study can be viewed through the related links. For more information, please feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Waving Phenomenon"

The Difficulty of Nonparametric Optimization! Introduction to a Technical Column

In the previous discussion, I explained that the checkerboard phenomenon is a challenging issue in topology optimization. I also discussed the technique of filtering as a workaround, but highlighted the difficulty in finding the right balance. A completely different approach has been proposed to avoid the checkerboard pattern without modifying the optimization problem. The idea is to have design variables at the nodes rather than at the elements, and to interpolate within the elements using a C^0 continuous function. Please feel free to download and take a look. [Contents] ■ Episode 5: The Difficulty of Non-Parametric Optimization Part 4 "Wavy Phenomenon" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Column] The Theory of OPTISHAPE-TS: Checkerboard Phenomenon

I will explain the difficulties of non-parametric optimization from another perspective!

In the previous sections, we explained that in non-parametric optimization, the number of design variables to be determined is large, meaning that the dimensionality of the space to be explored is high, which is why optimization algorithms using sensitivity are employed. In this article, we will further explain the difficulties of non-parametric optimization from another perspective. Please feel free to download and take a look. [Contents] ■ Episode 4: The Difficulty of Non-Parametric Optimization Part 3 "Checkerboard Phenomenon" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Optimization of Functions"

What does "optimizing a function" mean? An explanation from the perspective of the difficulties it presents.

In the previous article, I briefly explained non-parametric optimization. In that context, I mentioned that non-parametric optimization is a method for optimizing functions. In this article, I will explain what "optimizing a function" means, in order to deepen your understanding of the challenges it presents. Please feel free to download and take a look. [Contents] ■ Episode 2: The Challenges of Non-Parametric Optimization Part 1 "Optimization of Functions" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Shape Optimization"

An explanation of what the H-gradient method specifically entails! Introduction to a technical column.

In the previous four articles, we discussed the challenges of non-parametric optimization and the positioning of the H1 gradient method as a solution. From here, we will explain specifically what the H1 gradient method entails. Please feel free to download and take a look. [Contents] ■ Episode 6: The Emergence of the H1 Gradient Method and Its Background Part 1 "Shape Optimization" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration