1~45 item / All 162 items
Displayed results
Filter by category
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationContact this company
Contact Us Online1~45 item / All 162 items
Filter by category
The VOITH company's linear jet design, which is a challenging ship system characterized by complex shape features, combinations of multiple parts, and large-scale CFD calculation models, provides high customer satisfaction products by establishing and operating a fully automated design system using CAESES. The VOITH Linear Jet (VLJ) combines the simplicity of a propeller with the high-speed performance of a water jet. One of the most important challenges in the design of this product is to delay the occurrence of cavitation while maintaining high efficiency over a wide operating range. *For more detailed information, please refer to the related links. For more details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe support structure of the ocean platform must withstand the effects of waves over a long period and must have sufficient strength. By using CAESES, it is possible to optimize that structure and enhance its ability to withstand waves. This time, we conducted optimization of the ocean platform using CAESES. *For more detailed information, please refer to the related link. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationCAESES's hull parametric modeling, when combined with CFD software, facilitates the study of hull shapes (reducing resistance) and enables the design to optimize hull performance. The hull shape, particularly the forward shape, has a significant impact on hull resistance, making shape optimization crucial. With CAESES, hulls can be easily parameterized, allowing for straightforward adjustments to the hull shape. By generating multiple shape patterns and combining them with analysis tools, designs can be optimized according to various optimization objectives. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe sources of self-noise generated during the operation of watercraft can be classified into three categories. Propeller noise is generated by cavitation that occurs as the rotational speed increases, resulting in noise from the screw. Hydrodynamic noise includes all noise sources arising from the movement of submarines underwater. Mechanical noise is the mechanical sound produced by engines, control equipment, auxiliary machinery, etc., installed on the submarine. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn ships, especially large vessels, the size and position of the internal spaces of the hull are considered in the concept design phase during the early stages of design. In the case of oil tankers, the layout design of the internal hull is examined as an optimization problem to evaluate the overall performance throughout the operational period. The objective function during optimization becomes multi-faceted, including economic benefits, safety, and environmental pollution prevention, with one of the evaluation criteria being the bending moment that occurs in the hull in relation to cargo carrying capacity. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe radial propeller (hereinafter referred to as VRP) developed by the German machinery manufacturer VOITH combines a fixed-pitch azimuth thruster and a steering system into a single unit. This design principle is effective for machines that require high output and reliability, as well as precise dynamic displacement. Especially in harsh environments such as icy waters and deep seas, special vessels for assembling semi-submersible platforms, drilling ships, and wind turbines can use the VRP to arrive at their destinations quickly and safely, while ensuring they can maintain their stopping position reliably. *For more detailed information, please refer to the related link. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis time, we will introduce a case of optimization for bulk carriers by DNV GL, a European classification society. This case involves the optimization calculations for the hull and propeller of a bulk carrier. The hull in question is an Ultramax-sized hull called "Diamond 2." The optimization includes wave reduction, propulsion at the stern, twisting at the stern, and propeller design, with the shapes created using the CAD features of CAESES. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThere is a tidal power plant off the coast of France, consisting of four turbines with a capacity of 2 MW each, capable of supplying electricity to up to 4,000 households, making it a large-scale grid-connected tidal power facility. The advantages include minimal environmental impact and safety for marine life. The tidal power turbines are designed to operate at a depth of about 35 meters with a diameter of approximately 16 meters. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn the modified design of a self-elevating platform (SEP) vessel, a method is employed to reduce the pressure on the seabed by increasing the size of the spudcan (the legs of the jacking system). Additionally, to increase cargo capacity, the draft is increased, and sponsons (protrusions on the outside of the hull for improved stability) are added along the sides of the vessel. The upgraded spudcans and hull shape have a significant impact on the hydrodynamic characteristics. It is particularly noted that spudcans that are scaled up significantly in relation to the hull tend to show more pronounced effects. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationOne of the advantages of CAESES is its optimization design through an automation system connected to CFD software. This article introduces the blade shape optimization of marine propellers using OpenFOAM and CAESES, which is currently in use. In CAESES, in addition to methods for designing parametric 2D and 3D models, it is also possible to connect with various external software. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis article introduces the parametric design and optimization calculation system for hulls using CAESES. The role of CAESES in this instance is to evaluate design options for hull concepts and initial stages, with the background being a project promoting low-carbon maritime transportation. As part of this project, CAESES has been introduced for the design development of general cargo ships for the Republic of the Marshall Islands. *For more details, you can view the related links. For further information, please feel free to download the PDF or contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn the industry of operation, maintenance, and service for offshore wind power generation in Europe, which is expected to see significant growth in the future, fierce product competition is unfolding among companies. Related companies are pursuing "cost reduction of vessels," "high efficiency," and "high profitability" as much as possible to survive in the industry, advancing their design and development. The project introduced here involves the shape optimization of a SWATH vessel support ship with an innovative structure. *For detailed information, please refer to the related link. For more details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationWith the functional enhancements from the CAESES version upgrade and the development of external analysis software, optimization methods are not limited to a certain number and new methods are constantly being explored. There may be some who cannot envision the collaboration between optimization software like CAESES and the analysis software being used. Therefore, in this article, we will introduce two actual cases of ship shape optimization methods using CAESES. *For detailed content of the article, you can view it through the related links. For more information, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn March 2024, China drilled a 10,000-meter oil well in the center of the Taklamakan Desert, making it the first of its kind in the country and the second in the world. It is difficult to ascend into the sky, and even more challenging to descend to the ground. For aerospace, an altitude of 10,000 meters is significant, but when it comes to going underground, 10,000 meters can be said to represent the limits of human technology. For every 100 meters dug into the ground, the temperature increases by about 2°C, and pressure also rises. At a depth of 10,000 meters, one would be exposed to temperatures exceeding 200°C and pressures exceeding 130 MPa. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose thermal fluid analysis software AICFD, we will analyze the pressure loss and cooling performance of the energy storage converter. We will conduct an analysis that includes a cooling fan, and check the internal flow field and the temperature conditions of the mounted IGBTs. The mesh model to be analyzed consists of 2 inlets and 3 outlets, with boundary conditions assigned. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUAVs are controlled by a wireless remote control device and an embedded program control device, and they are classified into various forms such as unmanned fixed-wing aircraft, unmanned vertical take-off and landing vehicles, unmanned airships, unmanned helicopters, and unmanned multi-rotor aircraft. Their applications are wide-ranging, including aerial photography, agriculture, disaster relief, infectious disease monitoring, mapping, journalism, and film and television production. For optimization, a fully parametric blade model targeting the wing shape of unmanned aerial vehicles is created, and by integrating automated design with CFD analysis, appropriate design proposals are identified. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe Wright brothers first flew over a century ago, but now we live in an era where we can fly efficiently and affordably to the far corners of the world. In the future, it is expected that supersonic and hypersonic flights exceeding Mach 5 at altitudes above 90,000 feet will allow travel from the UK to Australia in just four hours, and this remarkable achievement could be realized within 20 years. Even more impressive is the development of spaceplanes that bridge the realms of air and space. *For more details, please refer to the related links. For further information, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationAircraft engine manufacturers are working daily on product development to meet the stringent demands of reducing exhaust emissions and fuel consumption. This effort requires further improvements in the design process to efficiently create aerodynamically superior compressor designs. In recent years, developing appropriate blade shapes that meet global design and performance requirements with high efficiency has necessitated numerous iterative calculations between different software tools for shape creation and fluid analysis. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis article introduces the air intake optimization of ramjet engines using AIPOD, our self-developed optimization platform. Ramjet engines are designed for air intake at Mach numbers of 3 and above, where the mixture flows in and the exit becomes subsonic, making it a type of jet engine. To accommodate different flight Mach numbers, a center cone called a spike can be moved forward and backward, and when the maximum flight Mach number of 3.5 is reached, the Mach line formed at the tapered vertex intersects exactly with the lip. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationComprehensive engineering simulation software with unlimited licensing This article introduces CAA analysis of NACA airfoils using TCAE. This project focuses on the NACA 0012 airfoil BANCIIIc3 benchmark [1] (3D code: 0.4[m], span: 10%) and delves into the field of computational aeroacoustics (CAA). By adopting advanced techniques such as acoustic analogy and Ffowcs Williams-Hawkings, we explore unsteady simulations with a physical time of 1[s] through finite volume CFD simulations in a cell-centered framework. *For more detailed information, you can view it through the related links. For more details, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe descent rate of an aircraft during landing significantly exceeds the normal landing descent rate, resulting in excessive landing impact loads and a reduction in the strength margin of the landing gear and fuselage structure. Landing loads are related not only to mass but also to the pull from the rotor during the flight state at landing and the structure of the landing gear itself. Conventional methods for predicting aircraft landing loads require spending hours on dozens of simulations under operational conditions, making it impossible to quickly and accurately obtain design solutions that meet the requirements. *For more detailed information, please refer to the related link. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose data analysis and modeling software DTEmpower, we will conduct a data-driven strength evaluation of the reusable spacecraft wall structure. Reusable spacecraft are a crucial tool for enabling transportation between space and the ground, and the evaluation of the load-bearing capacity of wall structures, as typical load-bearing components, is significantly related to the overall safety performance of the spacecraft. However, traditional finite element methods often require over 100 minutes of computation time for a single buckling analysis of an enhanced cylindrical exterior, leading to high costs. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose thermal fluid analysis software AICFD, we will conduct a transonic analysis of the M6 wing. The M6 wing is a classical test case for studying transonic flow and is a semi-infinite airfoil designed by the French aerospace research institute ONERA. The M6 wing exhibits typical transonic airfoil characteristics, such as shock waves that appear on the wing under specific conditions and expansion waves behind the shock waves. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose finite element analysis software AIFEM, we will conduct topology optimization analysis of an aircraft engine turbine disk. Since a typical turbine disk is designed based on the engineer's experience, knowledge, and numerous tests, it can be time-consuming and costly, and it may be difficult to achieve an ideal design effect that breaks through existing design thinking. By utilizing AIFEM's topology optimization function, we will perform structural optimization of the turbine disk, taking into account the coupling of thermal loads and centrifugal forces, to obtain a better shape. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis article introduces the reliability analysis of solid fuel rockets using the general-purpose finite element analysis software AIFEM. The formulation, molding process, materials, and manufacturing processes of the rocket's solid fuel propellant directly affect the engine's performance. By using AIFEM to comprehensively evaluate the performance state throughout the entire lifecycle of the propellant column—from curing and cooling to transportation, storage, and discharge heating and cooling—we can achieve a comprehensive reliability assessment solution. *For more details, please refer to the related links. For further information, feel free to download the PDF or contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose thermal fluid analysis software AICFD, we will conduct a performance analysis of the Rotor37 compressor. Rotor37 is a classic case of CFD compressible fluid calculations and is often used to verify the software's performance in the flow problem around the blades of a transonic axial compressor. We will analyze the three-dimensional flow characteristics of the compressor rotor, focusing on rotating machinery with practical engineering backgrounds derived from research results by NASA. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us directly.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe research and development project VIT-VI focuses on artificial intelligence (AI) technology and its application in the development of virtual and sustainable aircraft engines. The emphasis is on building and enhancing AI capabilities, as well as increasing the use of artificial intelligence technology to improve productivity in data and simulation-driven design. CAESES offers the potential to automate the design investigation and optimization process of shapes in complex flows. *For more detailed information, please refer to the related link. You can download the PDF for more details or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationFRIENDSHIP SYSTEMS, the developer of CAESES, has contributed to the reduction of energy consumption and CO2 emissions not only through support for the improvement of turbo machinery and engine-related parts but also for vessels. This article will introduce the experiences in design and improvement for CO2 emission reduction and how much annual CO2 emissions have been reduced by utilizing CAESES. *For detailed content of the article, please refer to the related link. For more information, feel free to download the PDF or contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn parametric modeling using CAESES, shape control is performed using the created model and the functions that serve as design parameters. However, there may be situations where the values of the design parameters are unknown, and there may be cases where one wishes to obtain design parameters from an already created model. The case introduced here is part of a project undertaken by a graduate student at Hamburg University of Technology. The method devised to determine design parameters from geometry for ship shape optimization is expected to be applicable in many other applications as well. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis article focuses on the software connection in the shape optimization process using OpenFOAM and CAESES. The application targeted is a propeller blade, and the connection between external software and CAESES can be established quickly, allowing for the rapid initiation of automatic optimization and design considerations for the blade. The collaboration between CAESES and OpenFOAM has been utilized in various cases, and tutorials and sample files are available within CAESES. This collaborative system using open-source software is highly efficient and can greatly benefit from optimization calculations. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationAn electric hydrofoil board (efoil) is a type of water sport that adds propulsion to a foil board, utilizing the buoyancy of an underwater wing (foil). A foil board has a foil mounted on its underside, shaped like a surfboard, and when it exceeds a certain speed, the buoyancy lifts the board off the water's surface, allowing the rider to enjoy a state of floating with no resistance. In a typical foil board without a propulsion device, movement requires shifting the center of gravity (pumping) to gain speed, especially in the absence of wind. However, with the electric hydrofoil board in question, you can continue to move across the water simply by controlling the power of the jet propulsion. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn pursuit of achieving carbon neutrality, the implementation of the existing ship energy efficiency index (EEXI) and the annual fuel consumption rating system (CII) will begin on January 1, 2023. This regulation will introduce new challenges in the operation of commercial vessels, requiring shipowners to evaluate and improve their vessels in accordance with regulatory requirements. To continue international navigation and trade activities as before, there are conditions such as obtaining certificates, making it very important to engage in optimization from a fluid dynamics perspective. *For more detailed information, you can view the related links. For further details, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationMany studies have been conducted on improving the efficiency of ships through the reduction of overall energy consumption. There are many considerations to achieve efficient ship design, starting with the optimization of the ship's operational profile (such as speed and load) and continuing into the early design stages. Among the representative methods are hull optimization and propeller optimization. Related to propellers, there is a device called the Propeller Boss Cap Fins (PBCF). *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationWe will introduce the parametric model of a twin-skeg vessel created by FRIENDSHIP SYSTEMS, the developer of the CAD + optimization software CAESES. In cases where the shape is symmetrical, only half of the hull is typically modeled. With CAESES, it is possible to robustly construct a model that incorporates the deformations anticipated by the user. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn this case, we will simulate the resistance values of a submarine under specific conditions using the AI forecasting function (Intelligent Forecasting) equipped in AICFD. The AI forecasting function is one of the distinctive modules of AICFD, and it solves the problem of the enormous number of analysis iterations in industrial design simulations through real-time result predictions by AI. *For more detailed information, you can view it through the related links. For more details, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn propeller modeling, a similar design approach is often applied. Typically, the blades are constructed based on functions such as rake, skew, and pitch, along with the definition of the profile section. By adding parameters such as the number of blades and the propeller diameter, the final propeller model is created. CAESES is equipped with features and workflows for designing propeller CAD models quickly and flexibly, suitable for automatic shape optimization using CFD. This process can be divided into the following steps. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThis article introduces the use of CAESES in propeller blade design by Caterpillar Propulsion, a manufacturer of construction and mining machinery and industrial machinery. The overall idea behind FRIENDSHIP SYSTEMS, the developer of the CAD + optimization software CAESES, when implementing CAESES for Caterpillar Propulsion was to integrate and control all software used (mesh generation and simulation software) and to implement it as a kind of workbench. At this time, CAESES can provide 3D parametric blade design that allows engineers to improve existing blades and profile definitions, while also offering high flexibility to try out new designs. *For more detailed information, please refer to the related links. For more details, you can download the PDF or feel free to contact us.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationDo you all know about "efoil"? An efoil is an electric foil board that allows you to experience the sensation of flying above the water. Here, we will introduce some aspects of the propeller design that comes with the foil board, as discussed by a CAESES user with FRIENDSHIP SYSTEMS, the developer of CAESES. *You can view the detailed content of the article through the related links. For more information, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn ship shape optimization, considering the analysis time and computational resource costs for a single case, engineers need to find an optimal design solution with as few computational cases as possible. Therefore, the selection of a rational optimization strategy becomes particularly important. This article introduces ship optimization using the general-purpose optimization platform AIPOD. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationIn the maritime industry, the demand for improving energy efficiency and reducing emissions to meet environmental regulations continues to grow year by year. As a result, traditional propeller designs are insufficient to meet this demand, making unconventional designs, such as tip rake propellers, that can enhance energy efficiency and minimize environmental impact increasingly important. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose data analysis and modeling software DTEmpower, we will implement data-driven design for hull lines. The design of hull lines is a crucial aspect of ship design, significantly impacting the technical performance and economic efficiency of vessels. Traditional ship shape design methods involve manual design, followed by a development process that includes CAD-assisted design and CFD-based technical evaluation. However, it has been believed that a more efficient and intelligent workflow can be established. By leveraging a data-driven intelligent design optimization platform, we can efficiently and quickly find the "appropriate" design targeting performance indicators. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose finite element analysis software AIFEM, we will perform topology optimization of the hull web. The hull web not only plays a role in supporting the hull but is also an important structure that enhances the stability of the hull underwater. In the shipbuilding process, the hull web is generally manufactured using high-strength steel plates or aluminum plates, and it is necessary to ensure that cracks or deformations do not occur during navigation. Therefore, when optimizing the web plate for weight reduction, it is essential to consider the effects of multiple mechanical working conditions. With this objective, by utilizing the topology optimization function of AIFEM, it becomes possible to address topology optimization scenarios that take into account multiple analysis steps and various working conditions. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationUsing the general-purpose data analysis and modeling software DTEmpower, we will introduce data modeling for hull resistance. When utilizing simulations in hull design, the time cost per case tends to be high, while the computational resources available are limited. Therefore, designers need to consider alternative performance evaluation methods that are not simulation-based in order to accelerate the optimization iterative process. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationTo optimize the hydrodynamic performance of the hull using the parametric modeling and optimization software CAESES, we first extract design variables related to the deformation of the hull's variable geometry. By increasing the number of design variables in this process, we can obtain a wider variety of deformation shapes, which in turn increases the likelihood of achieving better hull design proposals. However, the number of computational cases required for simulations (such as CFD analysis) increases exponentially (recommended number of cases S = 2^N, where N is the number of design variables), leading to significantly larger computational and time costs. To address this issue, CAESES5 offers a dimensionality reduction feature based on Principal Component Analysis (PCA) methods. *For more detailed information, please refer to the related links. For further details, feel free to download the PDF or contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationOne of the representative companies in China's shipping industry, MARIC (Marine Design & Research Institute of China), first utilized CAESES for a project focused on the optimization of hull shapes for container ships. In their research, MARIC engineers selected a baseline with excellent performance and attempted to reduce hull resistance at speeds of 18 knots and 27 knots. The constraints here were the length between perpendiculars, width, and draft, which were fixed values, while the variation in displacement was limited to ±0.5%. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registration