Finite element method-based magnetic field-thermal coupled analysis is effective for understanding heat distribution and temperature distribution!
This is an example of heating the entire cylindrical conductor by moving it and using induction heating. By passing through the center of a coil connected to an AC power source, eddy currents flow on the surface of the conductor, generating heat. The temperature rises from the surface, and heat is conducted internally. Due to the axisymmetric shape of this model, it can be analyzed using 2D axisymmetric analysis. Therefore, plate elements are used. To understand the heat generation distribution and temperature distribution inside the cylindrical conductor, a magnetic-thermal coupled analysis using the finite element method is effective. [Case Overview] ■ Analysis Module: PHOTO - EDDYjω & THERMO *For more details, please refer to the related links or feel free to contact us.
Inquire About This Product
basic information
For more details, please refer to the related links or feel free to contact us.
Price range
Delivery Time
Applications/Examples of results
For more details, please refer to the related links or feel free to contact us.
Company information
At Photon, we are developing "electromagnetic field analysis software" that models and simulates products and components utilizing electromagnetic phenomena on a computer. In traditional design and development environments, the process has primarily revolved around trial and error through prototyping based on the experience of engineers and experiments with prototypes. However, conducting experiments using actual prototypes and analyzing the results requires significant time and cost. Moving forward, transitioning from an experimental and prototyping-based approach to an analysis-based design approach will be a crucial challenge for improving productivity, and establishing simulation technology as the core of analysis-based design techniques will be essential. In this context, Photon is developing and providing "analysis software" focusing on electromagnetic fields, as well as heat, vibration, and sound fields. By utilizing Photon's software, efficient development and design of various industrial products can be achieved. In this way, Photon aims to support users in reducing the number of prototypes, lowering development costs, and shortening development periods in their manufacturing environments, ultimately enhancing their competitiveness.