We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Construction method.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Construction method Product List and Ranking from 45 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Sep 10, 2025~Oct 07, 2025
This ranking is based on the number of page views on our site.

Construction method Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Sep 10, 2025~Oct 07, 2025
This ranking is based on the number of page views on our site.

  1. 三和グランド Tokyo//Building materials, supplies and fixtures
  2. シャープ化学工業 大阪本社 Osaka//Chemical
  3. 小泉製麻 神戸本社 Hyogo//Manufacturing and processing contract
  4. 4 長野大信工業 Nagano//Manufacturing and processing contract
  5. 5 第一カッター興業 本社 Kanagawa//others

Construction method Product ranking

Last Updated: Aggregation Period:Sep 10, 2025~Oct 07, 2025
This ranking is based on the number of page views on our site.

  1. No paint leaks from the gaps in the protective covering! Edge painting protective method LCL method. シャープ化学工業 大阪本社
  2. Attention those struggling with ivy clinging to fences! Introducing 'Bariosu Net'! 小泉製麻 神戸本社
  3. Construction method "Cage mat multi-layer stacking type" 長野大信工業
  4. 4 Permeable blast furnace slag paving material "Color Sand" 三和グランド
  5. 4 Land Stitch Anchor for securing air conditioning outdoor units. キャムズ 本店/統括センター

Construction method Product List

226~240 item / All 351 items

Displayed results

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Existing Roads

Conducted driving tests with a 10-ton truck before and after the measures! We were able to achieve vibration reduction effects!

In Shizuoka Prefecture, vibration countermeasures were required in areas where complaints about vibrations had been occurring during road renovation work. As a result, the 'WIB method' was implemented directly beneath the road. Before and after the countermeasures, driving tests were conducted using a 10-ton truck. Vibration responses were measured and compared at the boundary between public and private properties along the road, on the ground within the site, and on the second floor of buildings. It was found that vibrations around the dominant frequency of 6Hz were reduced, achieving an average reduction of 10dB in the horizontal direction and 20dB in the vertical direction. [Case Summary] ■ Location: Shizuoka Prefecture ■ Client: Imamura Group Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several houses along the road ■ Countermeasure Method: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Pre-construction Vibration Simulation for Pile Driving Work

The impact of vibrations on residential areas and commercial facilities was found to be almost nonexistent, except for a very small range!

During the construction of a temporary platform for the sluice gate work, a vibro hammer was used to install the pile bridge pier. The impact of vibrations on surrounding residential and commercial facilities was evaluated through simulation analysis using the two-dimensional finite element method (2DFEM). Based on these results, the client conducted explanations of the vibration impact to nearby residents and surrounding commercial facility owners before the construction began. Some vibration effects were observed in residential areas close to the vibration source at the start of the pile driving, but the overall impact on residential and commercial facilities was minimal, with only a very limited area affected. 【Case Overview】 ■ Client: A certain construction consultant ■ Analysis Period: January 2020 ■ Cost: 1.77 million yen (excluding consumption tax, analysis fee for five measurement lines) ■ Vibration Source: Pile driving vibrations from a vibro hammer ■ Analysis Content: Evaluation of vibration impact on residential areas around the sluice gate *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (2)

Traffic vibrations transmitted from the ground have been reduced! An environment has been created that falls below regulatory standards after the measures were implemented!

At the model house along the main road in Chiba Prefecture, there were concerns about the impact of traffic vibrations on the living environment due to the proximity of a busy main road after the model house was newly constructed. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 12dB (about 1/4 of the original vibration). This model house is planned along a busy main road due to its appealing characteristics, but thanks to this construction, the traffic vibrations transmitted from the ground have been reduced, creating an expected quiet indoor environment suitable for the model house. 【Case Overview】 ■ Construction Location: Chiba Prefecture ■ Client: Tokyo Sekisui Heim Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the main road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF materials or feel free to contact us.

  • Other services

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (1)

Maintenance-free and semi-permanent! It creates a comfortable indoor environment without vibrations!

At the model house along the road in Tokyo, large vehicles pass by approximately every five minutes during the day, raising concerns about the impact of traffic vibrations on the living environment. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction of 10-12 dB (about 1/4 to 1/3 of the original vibration level). This installation is maintenance-free and semi-permanent, ensuring that even after the model house becomes a regular residence, a comfortable indoor environment free from vibrations will be maintained. 【Case Overview】 ■ Location: Tokyo ■ Client: Mitsui Home Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the road ■ Countermeasure: Plate-type WIB method (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Mitigation for Residential Buildings Along Subway Lines

Support beams were also installed! We were able to keep the vibration level below 50dB!

In Tokyo, residential buildings are located close to railways that run underground, raising concerns about the impact of railway vibrations on the living environment after the construction of new homes. To address this, the 'WIB method' was implemented directly beneath the residences. Since building support was necessary, support piles were also installed. After conducting vibration measurements before and after the implementation of the countermeasures, vibrations were reduced by 12 to 17 dB (from 1/7 to 1/4), successfully keeping the vibration level below 50 dB. 【Case Summary】 ■ Location: Tokyo ■ Client: Business owner ■ Vibration source: Railway vibrations ■ Preservation target: Residential buildings along the railway (underground) ■ Countermeasure method: Plate-type WIB (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, January 2019, Saitama Prefecture

Measures were implemented directly beneath each residence in Buildings A to E! The vibration level has been reduced to below 60 dB!

Some of the residential development plots in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of houses. Therefore, the 'WIB method' was implemented directly beneath each of the houses from Building A to Building E. Vibration measurements were conducted before and after the countermeasures. As a result, the dominant vibration at 10Hz was reduced by 14dB (to 1/5 of the original vibration), successfully keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Railway Vibration ■ Preservation Target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, September 2018, Saitama Prefecture

Concerns about the impact on the living environment after residential construction! Introducing examples aimed at increasing vibration reduction effects!

Some plots of a residential development in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of the houses. Therefore, the "WIB method" was implemented directly beneath the houses. In buildings D and E, where the vibration level exceeded 70dB before the measures were taken, the countermeasures were extended on the railway side to enhance the vibration reduction effect. After conducting vibration measurements before and after the measures, the dominant vibration at 10Hz was reduced by 6dB to 14dB (to 1/5 to 1/2 of the original vibration), successfully keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing manufacturer ■ Vibration source: Railway vibration ■ Preservation target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure: Plate-type WIB method (honeycomb cell type) ■ Installation position: Directly beneath the receiving side (partly on the propagation path) *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Mitigation for Residential Areas Along Elevated Bridges

Reduced vibrations of 4Hz by approximately 5dB and vibrations of 12.5 to 20Hz by approximately 10dB! The vibrations have become such that they do not affect livability!

The planned construction site for housing in Kanagawa Prefecture was experiencing traffic vibrations from the elevated bridge and the road in front of the site. As a countermeasure, we implemented measures directly beneath the apartment building. The vibrations from the elevated bridge were predominantly at 4Hz, while those from the road in front of the site ranged from 12.5 to 20Hz. We designed the 'WIB method' to address each type of vibration accordingly. As a result, we reduced the 4Hz vibrations by approximately 5dB and the 12.5 to 20Hz vibrations by about 10dB, ensuring that the vibrations did not affect the livability. [Case Overview] ■ Construction Location: Kanagawa Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Road Traffic Vibration ■ Preservation Target: Apartment Building (New, 3 Stories) ■ Countermeasure: Plate-type WIB Method (Honeycomb Cell Type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Residential Areas Along Roads

Confirmed a vibration reduction of 3-6 dB on the first floor and 4-5 dB on the second floor! Introducing a case where livability has improved!

In residential houses along the roads in Tokyo, vibrations from large vehicles were propagating, and vertical vibrations were affecting the living environment. Therefore, during the reconstruction of the houses, the 'WIB method' was implemented directly beneath the residences. Vibration measurements were conducted before and after the countermeasures within the buildings. As a result, a reduction of 3-6 dB on the first floor and 4-5 dB on the second floor was confirmed, leading to an improvement in livability. 【Case Summary】 ■ Location: Tokyo ■ Client: Sekisui Heim Corporation ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Houses along the road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, January 2014, Saitama Prefecture

Railway vibrations have been reduced by half! A damping effect of approximately 4dB in the horizontal direction and about 6dB in the vertical direction has been confirmed!

In the vicinity of the planned construction site for a detached house (two-story lightweight steel frame) in Saitama Prefecture, trains frequently pass by, raising concerns about the impact of railway vibrations on the living environment. Therefore, the 'WIB method' was implemented directly beneath the house. Vibration measurements taken before and after the construction confirmed a vibration reduction effect of approximately 4 dB in the horizontal direction and about 6 dB in the vertical direction, effectively halving the railway vibrations. 【Case Overview】 ■ Construction Location: Saitama Prefecture ■ Client: Sanyu Soil Engineering Co., Ltd. ■ Vibration Source: Railway vibrations ■ Preservation Target: Houses along the railway ■ Countermeasure Work: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Sewer Composite Manhole Rehabilitation Method "Eba Sheet Method"

Long-lasting corrosion-resistant manholes! A sewer composite manhole rehabilitation method that achieves material savings.

The "Evashito Method" is a composite manhole rehabilitation technique that involves attaching an "FRP sheet" to the inner wall of an existing manhole that has advanced corrosion, using an expansion frame, and filling the gap between the sheet and the existing manhole with mortar. The backside treatment of the FRP sheet creates a rough surface with the adhered silica sand, enhancing the adhesion strength with the filling material and achieving a complete integration with the existing manhole, resulting in strong durability. No heavy machinery is required, and no special skills are needed, allowing for construction in a small road occupancy area. By utilizing the existing manhole, material savings are achieved, along with a reduction in construction time, resulting in excellent cost-effectiveness. 【Features】 ■ High quality ■ High speed ■ Low cost ■ Can be constructed in a small road occupancy area ■ Achieves material savings by utilizing existing manholes *For more details, please refer to the PDF document or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Industrial Fan Inlet Protection Net

Just by covering it, it effectively guards against entanglement with industrial fans!

The "Industrial Fan Ingestion Prevention Net" can be easily secured by covering it and tying it with a string, effectively guarding against dangerous entrapment from both the front and back. It helps prevent small children from inserting their fingers through gaps and protects against clothing or other items getting caught during operation. It can be used with fan blade diameters of 45 to 50 cm.

  • Other safety and hygiene products

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Solar mounting foundation "e-pile・sp"

Short construction period and high-speed execution for low cost! No waste soil or cement needed for long lifespan!

The "e-pile・sp" is a steel pipe pile foundation method for solar mounting foundations that significantly reduces the labor involved in concrete foundation work by directly rotating and driving piles. By attaching wing extensions to the steel pipe piles, it demonstrates high compressive and pull-out forces. By resolving issues related to soft ground, steep slopes, and challenges in construction periods and processes, it has become possible to install smoothly under various conditions. 【Features】 ■ Significantly reduces the labor involved in concrete foundation work by directly rotating and driving piles ■ The tip is an enlarged base type that can be expected to provide high support and pull-out forces ■ Ensures stable quality at high speed, unaffected by weather ■ Easier land restoration compared to concrete foundations *For more details, please refer to the PDF materials or feel free to contact us.

  • Solar power generator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Comprehensive Catalog of Machinery for Promotion Methods for Sewer and Drainage Maintenance!

A wide range of items compatible with thrust construction methods, such as the "PIT method" which is free from vibration and noise, is featured!

The "Comprehensive Catalog of Machinery for Pushing Construction Methods" is a comprehensive catalog from Nagano Yuki, a manufacturer of hydraulic system equipment that plays a vital role in infrastructure development, including water supply and sewage systems. It features the "PIT Method," an environmentally friendly construction method that uses a vibration-free and low-noise oscillating press-in type shaft construction machine, as well as the "Strike Method," which employs special branches that are resistant to earthquakes and water-tight. It also includes pushing jacks and thrust jacks. [Contents Included] ■ PIT Method ■ DRM Method ■ Strike Method ■ Wild Boar Method ■ Pit Mini Method, etc. *For more details, please refer to the PDF document or feel free to contact us.

  • Hydraulic Equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

AGF-Me (Metal eco) construction method

It is possible to separate and recover steel pipes and injection materials during tunnel excavation! A construction method that allows for resource utilization as separated industrial waste.

The "AGF-Me (Metal eco) method" is a patented method (Patent No. 3882118) for a non-widening long steel pipe advance construction technique. It features vertical slits in the terminal reinforcement steel pipes of the cutting section during tunnel excavation with non-widening support, allowing for the separate recovery of the steel pipes and injected materials during excavation. This method eliminates unnecessary mixed waste and enables resource utilization as sorted waste. 【Features】 ■ Patent No. 3882118 obtained ■ Structure allows for separate recovery of steel pipes and injected materials during excavation ■ Eliminates unnecessary mixed waste and enables resource utilization as sorted waste *For more details, please refer to the PDF document or feel free to contact us.

  • Other work tools
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration