We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Simulation Software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Simulation Software Product List and Ranking from 20 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

Simulation Software Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

  1. シーメンス株式会社 gPROMS ポートフォリオ Kanagawa//software
  2. TCC Hiroshima//software
  3. FsTech Kanagawa//software
  4. 4 null/null
  5. 5 ペガサスソフトウェア Tokyo//software

Simulation Software Product ranking

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

  1. Simulation software 'gPROMS Process' シーメンス株式会社 gPROMS ポートフォリオ
  2. Simulation software "MCSimulator" TCC
  3. Simulation software "PEGASUS" ペガサスソフトウェア
  4. [Development Case] Simulation TCC
  5. 4 Web handling simulation tool *Free explanatory materials provided

Simulation Software Product List

76~90 item / All 96 items

Displayed results

Optimization of the turbine blade shape of the turbocharger.

Introduction to the combination of CFD and stress analysis, as well as scallop turbine wheels!

FRIENDSHIP SYSTEMS, the developer of CAESES, has collaborated with MTU and Darmstadt University of Technology to develop a robust and variable turbine wheel geometry for turbochargers. The research, called Project GAMMA ("Efficient Gas Engines for Maritime Applications of the Next Generation"), aims to develop and prepare new technologies and interactions within the system for LNG/natural gas, which serves as fuel for efficient ship propulsion systems. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • ターボチャージャーのタービンブレード形状最適化2.png
  • ターボチャージャーのタービンブレード形状最適化3.png
  • ターボチャージャーのタービンブレード形状最適化4.png
  • ターボチャージャーのタービンブレード形状最適化5.png
  • ターボチャージャーのタービンブレード形状最適化6.png
  • ターボチャージャーのタービンブレード形状最適化7.png
  • ターボチャージャーのタービンブレード形状最適化8.png
  • Structural Analysis
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Design of a centrifugal water pump

Implementing the design process of a centrifugal water pump that maximally utilizes the capabilities of CAESES!

Centrifugal pumps are commonly used in industrial and household applications because their design, manufacturing, and maintenance are relatively simple. They also have the advantage of being efficient and easily adaptable to various sizes. Students from the Department of Transportation Systems at the Technical University of Berlin implemented the design process of a centrifugal water pump that maximizes the capabilities of CAESES as part of an internship project at FRIENDSHIP SYSTEMS, the developer of CAESES. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 遠心式ウォーターポンプの設計2.png
  • 遠心式ウォーターポンプの設計3.png
  • 遠心式ウォーターポンプの設計4.png
  • Structural Analysis
  • Other pumps

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of drone propeller shape

Providing the right products to customers! Introducing the benefits and applications of CAESES at Parrot.

The French company Parrot, which specializes in the design and development of drones, uses CAESES for the design of drone propellers. The reason Parrot's engineers, who are experts in the drone market, adopted CAESES is to speed up the design process and provide customers with even more suitable products. Here, we will introduce the benefits and applications of CAESES at Parrot. *For detailed information, you can view the related links. For more details, please download the PDF or feel free to contact us.*

  • ドローンのプロペラ形状の最適化2.png
  • ドローンのプロペラ形状の最適化3.png
  • ドローンのプロペラ形状の最適化4.png
  • ドローンのプロペラ形状の最適化5.gif
  • Structural Analysis
  • Software (middle, driver, security, etc.)

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization design of assistive artificial hearts

Introducing the parametric model of the pump model and the evaluation of H-Q (Head-Flow) and T-Q (Torque-Flow)!

This article introduces the research and development of a ventricular assist device conducted by researchers at the Penn State College of Medicine using CAESES and CONVERGE. The goal of this research is to reduce the risk of adverse events such as hemolysis, degradation of von Willebrand factor, and thrombosis while minimizing the size of the pumps used in artificial hearts. To efficiently create a wide range of pump designs, CAESES has parameterized the flow path shape of the pump. *For more detailed information, you can view the related links. For further details, please download the PDF or feel free to contact us.*

  • 補助人工心臓の最適化設計2.png
  • 補助人工心臓の最適化設計3.png
  • 補助人工心臓の最適化設計4.png
  • Structural Analysis
  • Other analysis software
  • Other Pumps

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of turbine blade shape

Enabling optimization calculations of parametric models through automated processes!

In this case, we will introduce the shape optimization of gas turbine fixed blades, including end wall contouring, which is a joint project with SIEMENS. An efficient workflow using CAESES can provide significant support for design development. The gas turbine, which is the application in this instance, is a type of internal combustion engine used for driving generators, among other purposes. *For more detailed information, you can view it through the related links. For more details, please download the PDF or feel free to contact us.

  • タービンブレードの形状最適化2.gif
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Aerodynamic optimization of vertical axis wind turbines

CAESES can perform optimization calculations and support users in their design tasks!

In this case, we will introduce the optimization calculations for vertical axis wind turbines. FRIENDSHIP SYSTEMS, the developer of the optimization design system CAESES, investigated the aerodynamic behavior of vertical axis wind turbines using the mesh generation software Pointwise. As a first initiative, FRIENDSHIP SYSTEMS connected the automatic mesh generation by Pointwise with CAESES and executed a method to optimize vertical axis wind turbines in 2D using various tools, including analysis software. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 垂直軸風力タービンの空力最適化2.png
  • 垂直軸風力タービンの空力最適化3.png
  • 垂直軸風力タービンの空力最適化4.png
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the Leading Edge for Boundary Layer Experiments on a Flat Plate

When the minimum curvature radius is approximately 2.5mm, it is possible to prevent plastic deformation of the steel belt!

Predicting transitional boundary layers under arbitrary conditions in fluid mechanics is a very challenging task. A research group at Karlsruhe Institute of Technology conducted tests for predicting transitional boundary layers considering the effects of pressure gradients, mainstream turbulence, and surface roughness, using CAESES and the open-source OpenFOAM for suitable leading-edge shape optimization. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 平板境界層実験のためのリーディングエッジの最適化2.png
  • 平板境界層実験のためのリーディングエッジの最適化3.png
  • 平板境界層実験のためのリーディングエッジの最適化4.png
  • 平板境界層実験のためのリーディングエッジの最適化5.png
  • 平板境界層実験のためのリーディングエッジの最適化6.png
  • 平板境界層実験のためのリーディングエッジの最適化7.png
  • 平板境界層実験のためのリーディングエッジの最適化8.png
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A New Approach to the Design of sCO2 Axial Flow Turbines

Introducing a design case of a supercritical carbon dioxide axial flow turbine for waste heat recovery (WHR) in a 10MW class power plant!

In conventional thermal and nuclear power plants, steam and combustion gases are used as working fluids to drive turbines and generate electricity. In this case, we will introduce a design method for axial flow turbines using supercritical carbon dioxide (sCO2) as the working fluid, which reaches a supercritical state under relatively mild conditions using CAESES. The supercritical state exhibits properties that are intermediate between gas and liquid, and due to its high density and heat capacity, it has the potential to improve cycle efficiency compared to using gases below the critical point. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • sCO2軸流タービン設計のための新しいアプローチ2.png
  • sCO2軸流タービン設計のための新しいアプローチ3.png
  • sCO2軸流タービン設計のための新しいアプローチ4.png
  • sCO2軸流タービン設計のための新しいアプローチ5.png
  • sCO2軸流タービン設計のための新しいアプローチ6.png
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization Case of Centrifugal Compressor Impeller Using CAESES

By constructing a parametric model, it is also possible to optimize the entire compressor model!

Centrifugal compressors are compact yet feature a high pressure ratio, and they are widely used in systems in the fields of aircraft and marine vessels. Impeller design is a crucial design aspect of centrifugal compressors and has a significant impact on compressor performance. In this case, we conducted automatic performance optimization using CAESES combined with CFD tools on an existing centrifugal compressor impeller model. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • CAESESによる遠心圧縮機インペラの最適化事例2.png
  • CAESESによる遠心圧縮機インペラの最適化事例3.png
  • CAESESによる遠心圧縮機インペラの最適化事例4.png
  • CAESESによる遠心圧縮機インペラの最適化事例7.gif
  • CAESESによる遠心圧縮機インペラの最適化事例8.gif
  • CAESESによる遠心圧縮機インペラの最適化事例9.gif
  • CAESESによる遠心圧縮機インペラの最適化事例10.gif
  • Centrifugal concentrator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the rear wing shape

Utilizing CAESES for the optimization of the rear wing shape attached to racing cars!

FRIENDSHIP SYSTEMS, the developer of CAESES, has actively supported student racing teams such as FaSTTUBe and the Ryerson Formula Racing Team. Among these, CAESES was utilized for the optimization of the rear wing shape of racing cars in the Formula Student Germany (FSG) contest, which gathers students from all over Germany. This case study will introduce the optimization of the rear wing and its results. *For more detailed information, please refer to the related links. For further inquiries, feel free to download the PDF or contact us.*

  • 9-2.png
  • 9-3.gif
  • 9-4.png
  • 9-5.png
  • 9-6.png
  • 9-7.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Collaboration feature of CONVERGE and CAESES using the intake port.

Supporting development design operations! Introducing features that can be effectively utilized.

The optimization calculation software CAESES and the thermal fluid analysis software CONVERGE work together as a collaborative optimization system aimed at shape optimization and investigating the effects of design variables, providing support to engineers in the design and development field. In this article, we will introduce the functions that can be effectively utilized in CAESES when collaborating with CONVERGE, using intake port models and piston models. *For detailed content of the article, please refer to the related links. For more information, feel free to download the PDF or contact us.

  • 11-2.png
  • 11-3.png
  • 11-4.png
  • 11-5.png
  • 11-6.gif
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

AIPOD: Optimization of Ship Performance

The selection of a rational optimization strategy is particularly important! The model in question is the KCS hull form.

In ship shape optimization, considering the analysis time and computational resource costs for a single case, engineers need to find an optimal design solution with as few computational cases as possible. Therefore, the selection of a rational optimization strategy becomes particularly important. This article introduces ship optimization using the general-purpose optimization platform AIPOD. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 船舶の性能最適化2.png
  • 船舶の性能最適化3.png
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Propeller design for efoil using CAESES

Here is a brief introduction to the design of the propeller included with the foil board!

Do you all know about "efoil"? An efoil is an electric foil board that allows you to experience the sensation of flying above the water. Here, we will introduce some aspects of the propeller design that comes with the foil board, as discussed by a CAESES user with FRIENDSHIP SYSTEMS, the developer of CAESES. *You can view the detailed content of the article through the related links. For more information, please download the PDF or feel free to contact us.*

  • efoilのプロペラ設計2.png
  • Other analyses
  • 3D Printer

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Collaboration between CAESES and OpenFOAM in Blade Shape Optimization

Introduction to parameter control of script files and optimization execution during OpenFOAM integration!

This article focuses on the software connection in the shape optimization process using OpenFOAM and CAESES. The application targeted is a propeller blade, and the connection between external software and CAESES can be established quickly, allowing for the rapid initiation of automatic optimization and design considerations for the blade. The collaboration between CAESES and OpenFOAM has been utilized in various cases, and tutorials and sample files are available within CAESES. This collaborative system using open-source software is highly efficient and can greatly benefit from optimization calculations. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • ブレード形状最適化におけるCAESESとOpenFOAMの連携2.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携3.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携4.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携5.png
  • ブレード形状最適化におけるCAESESとOpenFOAMの連携7.png
  • Other analyses
  • Image analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Acquisition of design parameters for geometry based on neural networks.

A method devised to understand design parameters from geometry for ship shape optimization!

In parametric modeling using CAESES, shape control is performed using the created model and the functions that serve as design parameters. However, there may be situations where the values of the design parameters are unknown, and there may be cases where one wishes to obtain design parameters from an already created model. The case introduced here is part of a project undertaken by a graduate student at Hamburg University of Technology. The method devised to determine design parameters from geometry for ship shape optimization is expected to be applicable in many other applications as well. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得2.gif
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得3.gif
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得4.gif
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得5.gif
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得6.png
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得7.png
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得8.png
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得9.png
  • ニューラルネットワークに基づくジオメトリの設計パラメータ取得10.png
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration