We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Simulation Software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Simulation Software(cae) - List of Manufacturers, Suppliers, Companies and Products

Simulation Software Product List

16~30 item / All 35 items

Displayed results

Aerodynamic optimization of vertical axis wind turbines

CAESES can perform optimization calculations and support users in their design tasks!

In this case, we will introduce the optimization calculations for vertical axis wind turbines. FRIENDSHIP SYSTEMS, the developer of the optimization design system CAESES, investigated the aerodynamic behavior of vertical axis wind turbines using the mesh generation software Pointwise. As a first initiative, FRIENDSHIP SYSTEMS connected the automatic mesh generation by Pointwise with CAESES and executed a method to optimize vertical axis wind turbines in 2D using various tools, including analysis software. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 垂直軸風力タービンの空力最適化2.png
  • 垂直軸風力タービンの空力最適化3.png
  • 垂直軸風力タービンの空力最適化4.png
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Propeller design of Caterpillar Propulsion

Execute tasks such as setting up the blade model and generating individual dynamic 2D drawings!

Caterpillar Propulsion has implemented CAESES for the design of propeller blades. When we started on a project basis, the overall idea was to implement it as a workbench that integrates and controls mesh generation and simulation software. At the same time, CAESES needs to provide a fully parametric 3D blade design that allows Caterpillar Propulsion's engineers to reconstruct the definitions of existing blades and profiles, while also requiring high flexibility to try out entirely new designs. *For more details, please refer to the related link. For further information, you can download the PDF or feel free to contact us.*

  • Caterpillar Propulsionのプロペラ設計2.png
  • Mechanical Design

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Torque converter shape optimization

CAESES provides beneficial results across various fields, regardless of the products in question!

A torque converter for automobiles is a type of fluid coupling used in vehicles equipped with automatic transmissions to transmit rotational force from the engine to the drive shaft. Designers of torque converters work to minimize cavitation within the device and ensure good flow behavior of the transmission oil, aiming to maximize efficiency and torque ratio at high speeds. CAESES enables the modeling of such complex shapes and can build an optimization system that incorporates shape data into analysis software. By connecting CFD analysis software and proprietary CFD codes to CAESES, it analyzes flow behavior for each designed shape during optimization calculations and provides users with the optimal shape based on constraints. *For more detailed information, please refer to the related links. For further details, feel free to download the PDF or contact us.*

  • 13-2.png
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Marine platform

The final structure reduced relative motion by 4% compared to the initial structure, resulting in material savings.

The support structure of the ocean platform must withstand the effects of waves over a long period and must have sufficient strength. By using CAESES, it is possible to optimize that structure and enhance its ability to withstand waves. This time, we conducted optimization of the ocean platform using CAESES. *For more detailed information, please refer to the related link. For further details, you can download the PDF or feel free to contact us.*

  • 6368763462076739021753337.gif
  • 6368763466640089517647976.gif
  • 6368763471879947459637115.jpg
  • Software (middle, driver, security, etc.)
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization design of assistive artificial hearts

Introducing the parametric model of the pump model and the evaluation of H-Q (Head-Flow) and T-Q (Torque-Flow)!

This article introduces the research and development of a ventricular assist device conducted by researchers at the Penn State College of Medicine using CAESES and CONVERGE. The goal of this research is to reduce the risk of adverse events such as hemolysis, degradation of von Willebrand factor, and thrombosis while minimizing the size of the pumps used in artificial hearts. To efficiently create a wide range of pump designs, CAESES has parameterized the flow path shape of the pump. *For more detailed information, you can view the related links. For further details, please download the PDF or feel free to contact us.*

  • 補助人工心臓の最適化設計2.png
  • 補助人工心臓の最適化設計3.png
  • 補助人工心臓の最適化設計4.png
  • Structural Analysis
  • Other analysis software
  • Other Pumps

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of vessels

The total hull resistance obtained after parametric modeling, CFD analysis, and optimization processing was reduced by 2 to 3%.

CAESES's hull parametric modeling, when combined with CFD software, facilitates the study of hull shapes (reducing resistance) and enables the design to optimize hull performance. The hull shape, particularly the forward shape, has a significant impact on hull resistance, making shape optimization crucial. With CAESES, hulls can be easily parameterized, allowing for straightforward adjustments to the hull shape. By generating multiple shape patterns and combining them with analysis tools, designs can be optimized according to various optimization objectives. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • 6370199815693877095633449.gif
  • 6370199819867683684716010.jpg
  • Software (middle, driver, security, etc.)
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the turbine blade shape of the turbocharger.

Introduction to the combination of CFD and stress analysis, as well as scallop turbine wheels!

FRIENDSHIP SYSTEMS, the developer of CAESES, has collaborated with MTU and Darmstadt University of Technology to develop a robust and variable turbine wheel geometry for turbochargers. The research, called Project GAMMA ("Efficient Gas Engines for Maritime Applications of the Next Generation"), aims to develop and prepare new technologies and interactions within the system for LNG/natural gas, which serves as fuel for efficient ship propulsion systems. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • ターボチャージャーのタービンブレード形状最適化2.png
  • ターボチャージャーのタービンブレード形状最適化3.png
  • ターボチャージャーのタービンブレード形状最適化4.png
  • ターボチャージャーのタービンブレード形状最適化5.png
  • ターボチャージャーのタービンブレード形状最適化6.png
  • ターボチャージャーのタービンブレード形状最適化7.png
  • ターボチャージャーのタービンブレード形状最適化8.png
  • Structural Analysis
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of bulk carrier shape

The objective function of the first stage of optimization was set for five combinations of draft and speed regarding power consumption and hull weight at sea.

This time, we will introduce a case of optimization for bulk carriers by DNV GL, a European classification society. This case involves the optimization calculations for the hull and propeller of a bulk carrier. The hull in question is an Ultramax-sized hull called "Diamond 2." The optimization includes wave reduction, propulsion at the stern, twisting at the stern, and propeller design, with the shapes created using the CAD features of CAESES. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.*

  • 6376317451117000702293720.png
  • 6376317457457505981388963.png
  • 6376194216919820486447540.png
  • Software (middle, driver, security, etc.)
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the air intake for AIPOD.

Introduction to parametric modeling using CAD and optimization software CAESES.

This article introduces the air intake optimization of ramjet engines using AIPOD, our self-developed optimization platform. Ramjet engines are designed for air intake at Mach numbers of 3 and above, where the mixture flows in and the exit becomes subsonic, making it a type of jet engine. To accommodate different flight Mach numbers, a center cone called a spike can be moved forward and backward, and when the maximum flight Mach number of 3.5 is reached, the Mach line formed at the tapered vertex intersects exactly with the lip. *For more detailed information, please refer to the related links. For further details, you can download the PDF or feel free to contact us.

  • 6381759902813614445822789.png
  • 6381759981474546185610338.png
  • 6381759992713570191512476.png
  • 6381760054527663661365892.png
  • 6381760086352692063301304.png
  • 6381760100908887057236142.png
  • 6381760116855762934017998 (1).png
  • 6381760116855762934017998.png
  • 6381760135552657312363288.png
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of turbine blade shape

Enabling optimization calculations of parametric models through automated processes!

In this case, we will introduce the shape optimization of gas turbine fixed blades, including end wall contouring, which is a joint project with SIEMENS. An efficient workflow using CAESES can provide significant support for design development. The gas turbine, which is the application in this instance, is a type of internal combustion engine used for driving generators, among other purposes. *For more detailed information, you can view it through the related links. For more details, please download the PDF or feel free to contact us.

  • タービンブレードの形状最適化2.gif
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the Leading Edge for Boundary Layer Experiments on a Flat Plate

When the minimum curvature radius is approximately 2.5mm, it is possible to prevent plastic deformation of the steel belt!

Predicting transitional boundary layers under arbitrary conditions in fluid mechanics is a very challenging task. A research group at Karlsruhe Institute of Technology conducted tests for predicting transitional boundary layers considering the effects of pressure gradients, mainstream turbulence, and surface roughness, using CAESES and the open-source OpenFOAM for suitable leading-edge shape optimization. *For more details, you can view the related links. For further information, please download the PDF or feel free to contact us.*

  • 平板境界層実験のためのリーディングエッジの最適化2.png
  • 平板境界層実験のためのリーディングエッジの最適化3.png
  • 平板境界層実験のためのリーディングエッジの最適化4.png
  • 平板境界層実験のためのリーディングエッジの最適化5.png
  • 平板境界層実験のためのリーディングエッジの最適化6.png
  • 平板境界層実験のためのリーディングエッジの最適化7.png
  • 平板境界層実験のためのリーディングエッジの最適化8.png
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Morphing of the injector nozzle

Implement shape deformation on the injector nozzle using the morphing function!

One of the components targeted for optimization in diesel engines is the injector. This component is designed with careful consideration of its orientation and dimensions to ensure that fuel is injected appropriately into the combustion chamber, making it highly refined. In this case, we will introduce a method for rapidly deforming the existing nozzle shape of the fuel injection system. Based on the shape data imported into CAESES in STL format, we will use the morphing function to implement shape deformation on the injector nozzle. *For more detailed information, you can view the related links. For further details, please download the PDF or feel free to contact us.*

  • 7-2.png
  • 7-3.gif
  • 7-4.gif
  • 7-5.gif
  • 7-6.gif
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Propeller optimization using machine learning

The main objective of the contest was to design a propeller that could achieve maximum efficiency at a wide range of operating speeds.

In propeller design, achieving optimal efficiency and performance is extremely important. Recently, by effectively combining AI and CFD, we were able to win an online propeller design contest hosted by a popular YouTube creator. In this contest, we were able to create two high-performance propellers that demonstrated excellent efficiency using "CAESES" and "AirShaper." *For more details, you can view the related links. For more information, please download the PDF or feel free to contact us.*

  • 機械学習によるプロペラ最適化2.gif
  • 機械学習によるプロペラ最適化3.gif
  • 機械学習によるプロペラ最適化4.gif
  • 機械学習によるプロペラ最適化5.gif
  • 機械学習によるプロペラ最適化6.gif
  • 機械学習によるプロペラ最適化7.png
  • 機械学習によるプロペラ最適化8.png
  • 機械学習によるプロペラ最適化9.png
  • 機械学習によるプロペラ最適化10.png
  • Image analysis software
  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Shape optimization of SWATH support vessels.

In conducting shape optimization, CAESES was used for the creation of the parametric model and optimization calculations.

In the industry of operation, maintenance, and service for offshore wind power generation in Europe, which is expected to see significant growth in the future, fierce product competition is unfolding among companies. Related companies are pursuing "cost reduction of vessels," "high efficiency," and "high profitability" as much as possible to survive in the industry, advancing their design and development. The project introduced here involves the shape optimization of a SWATH vessel support ship with an innovative structure. *For detailed information, please refer to the related link. For more details, you can download the PDF or feel free to contact us.*

  • 6377991615469876016857917.png
  • 6377991633894897438080663.png
  • 6377889885001534016043736.gif
  • 6377991747754245955127008.png
  • 6377991811369977035143448.png
  • Other measurement, recording and measuring instruments
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of Container Ship Shape

Partial parametric modeling adopted! Deformation of the hull shape is defined.

One of the representative companies in China's shipping industry, MARIC (Marine Design & Research Institute of China), first utilized CAESES for a project focused on the optimization of hull shapes for container ships. In their research, MARIC engineers selected a baseline with excellent performance and attempted to reduce hull resistance at speeds of 18 knots and 27 knots. The constraints here were the length between perpendiculars, width, and draft, which were fixed values, while the variation in displacement was limited to ±0.5%. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • コンテナ船の形状最適化2.png
  • コンテナ船の形状最適化3.png
  • コンテナ船の形状最適化4.png
  • コンテナ船の形状最適化5.png
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration