We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Structural Analysis Software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Structural Analysis Software Product List and Ranking from 23 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

Structural Analysis Software Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

  1. SCSK デジタルエンジニアリング事業本部 Tokyo//software
  2. アルテアエンジニアリング Tokyo//software
  3. null/null
  4. エヌ・エス・ティ Tokyo//software
  5. 5 null/null

Structural Analysis Software Product ranking

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

  1. Large-scale structural analysis software ADVENTURECluster SCSK デジタルエンジニアリング事業本部
  2. Structural analysis software for designers, Altair Inspire. アルテアエンジニアリング
  3. [FEM Analysis Case] Deformation Analysis of Construction Machinery ROPS
  4. 4 Introduction to Desktop Structural Analysis Program エヌ・エス・ティ
  5. 5 For the analysis of civil structures, general-purpose structural analysis software 'ISCEF' センチュリテクノ

Structural Analysis Software Product List

46~60 item / All 101 items

Displayed results

[Case Study] Shape Optimization for Equalizing Reaction Forces ★ Detailed Materials Available

Consider "reaction force" as a manufacturing requirement! Reduce the reaction force values at points with high fixed-point reaction forces!

We will perform non-parametric shape optimization to ensure that the reaction forces at the bolted fixed points are equal, and we will introduce a case that reduces the reaction force values at locations with high fixed point reaction forces. The analysis model completely fixes four bolted points and sets a load of 1,000N in the Z-axis direction. In the evaluation of the initial shape, the reaction force value at the lower left part was the highest, reaching 415.1N. 【Case Overview】 ■Optimization Conditions - Objective Function: Volume Minimization - Constraints: Reaction force of 250N in the Z-axis direction at each fixed point, 3.0 times the compliance of the initial shape - Shape Variation Restrictions (constraints related to manufacturing requirements): Minimum thickness, maintaining the plane of the Z component on one side For further details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis
  • Contract Analysis
  • simulator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Example] Shape optimization considering stress

Using "OPTISHAPE-TS"! Introducing optimization cases with different stress constraints based on model parts.

In strength design, stress serves as an important guideline. When conducting strength assessments based on stress, it is necessary to vary the evaluation stress values according to different parts, rather than relying solely on the maximum value. In such cases, by specifying constraint stress values for each region, it is possible to obtain an optimal shape that constrains stress at multiple evaluation points and all locations. This time, we will introduce an optimization case with different stress constraints applied to various parts of the model. [Contents] ■ Overview ■ Analysis Model ■ Optimization Conditions ■ Results ■ Discussion *Detailed information about the case can be viewed through the related links. For more details, please feel free to contact us.

  • Structural Analysis
  • Contract Analysis
  • Stress Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Accuracy Verification of Displacement and Temperature Using Finite Covering Method (FCM)

I will introduce the issues of voxel analysis and a case study applying FCM as a solution!

The displacement solution of static stress analysis or the temperature solution of steady-state heat conduction analysis rarely produces errors as long as the shape is represented accurately; however, there are problems where the errors can become significant. When the original shape does not match the voxel pitch, discrepancies in the shape occur. Therefore, to achieve better accuracy in the analysis, it is necessary to refine the mesh, which increases the model size. Here, we will introduce a case study applying FCM as a solution to this issue. [Contents] ■ Overview - Issues with voxel analysis ■ Analysis Model - Boundary conditions ■ Analysis Results - Static stress analysis / Steady-state heat conduction analysis *Detailed information about the case study can be viewed through the related links. For more details, please feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Waving Phenomenon"

The Difficulty of Nonparametric Optimization! Introduction to a Technical Column

In the previous discussion, I explained that the checkerboard phenomenon is a challenging issue in topology optimization. I also discussed the technique of filtering as a workaround, but highlighted the difficulty in finding the right balance. A completely different approach has been proposed to avoid the checkerboard pattern without modifying the optimization problem. The idea is to have design variables at the nodes rather than at the elements, and to interpolate within the elements using a C^0 continuous function. Please feel free to download and take a look. [Contents] ■ Episode 5: The Difficulty of Non-Parametric Optimization Part 4 "Wavy Phenomenon" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Column] The Theory of OPTISHAPE-TS: Checkerboard Phenomenon

I will explain the difficulties of non-parametric optimization from another perspective!

In the previous sections, we explained that in non-parametric optimization, the number of design variables to be determined is large, meaning that the dimensionality of the space to be explored is high, which is why optimization algorithms using sensitivity are employed. In this article, we will further explain the difficulties of non-parametric optimization from another perspective. Please feel free to download and take a look. [Contents] ■ Episode 4: The Difficulty of Non-Parametric Optimization Part 3 "Checkerboard Phenomenon" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Optimization of Functions"

What does "optimizing a function" mean? An explanation from the perspective of the difficulties it presents.

In the previous article, I briefly explained non-parametric optimization. In that context, I mentioned that non-parametric optimization is a method for optimizing functions. In this article, I will explain what "optimizing a function" means, in order to deepen your understanding of the challenges it presents. Please feel free to download and take a look. [Contents] ■ Episode 2: The Challenges of Non-Parametric Optimization Part 1 "Optimization of Functions" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Technical Column] The Theory of OPTISHAPE-TS: "Shape Optimization"

An explanation of what the H-gradient method specifically entails! Introduction to a technical column.

In the previous four articles, we discussed the challenges of non-parametric optimization and the positioning of the H1 gradient method as a solution. From here, we will explain specifically what the H1 gradient method entails. Please feel free to download and take a look. [Contents] ■ Episode 6: The Emergence of the H1 Gradient Method and Its Background Part 1 "Shape Optimization" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Theory of OPTISHAPE-TS Compliance Sensitivity Part 3

Sensitivity of compliance for a one-dimensional cantilever beam! Explanation of the derivation concept.

In the previous article, we introduced the Lagrange multiplier method as a condition that solutions must satisfy in optimization problems with equality constraints. This time, we will apply that concept to derive the sensitivity of compliance. Please feel free to download and take a look. [Contents] ■ Episode 25: Sensitivity of Compliance Part 3 "Lagrange Multiplier Method" *For more details, please refer to the PDF document or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Theory of OPTISHAPE-TS Compliance Sensitivity Part 4

Introduction to a technical column on problems involving design variables represented by functions!

In the previous articles, we explained the compliance and its sensitivity when introducing two-dimensional design variables for a one-dimensional cantilever beam. This time, we will finally replace the design variables from a finite-dimensional vector to an infinite-dimensional function and construct the problem. Please feel free to download and take a look. [Contents] ■ Episode 26 Sensitivity of Compliance Part 4 "Problems with Design Variables Represented by Functions" *For more details, please refer to the PDF materials or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Introduction to a top-class finite element solver.

A solution that incorporates high reliability, proven results, and the latest analytical technologies abundantly.

NASTRAN is an analysis program born from a space program where failure is not an option, and for over 40 years, it has maintained high reliability and a proven track record in meeting the stringent demands of various fields such as aerospace/defense, construction, automotive, shipbuilding, machinery, and electrical/electronics. Simcenter Nastran inherits this high reliability and proven track record while incorporating the latest analysis technologies, making it a solution suitable for the 21st century. 【Features】 - Supports large-scale problems and advanced nonlinear analysis - Flexible selection of the number of implementations based on analysis content - Operates on multiple operating systems such as Windows, UNIX, and Linux - Supports 64-bit modules, memory-shared parallel processing, and parallel processing on cluster machines 【Available Analyses】 - Linear static analysis: SOL101 - Eigenvalue analysis: SOL103 - Buckling analysis: SOL105 - Steady-state heat conduction analysis: SOL153 - Transient heat conduction analysis: SOL159 - Linear transient analysis: SOL109/112 - Frequency response analysis: SOL108/111 - Response spectrum analysis: SOL109/112, etc. *There are also various other modules available, so please contact us for more detailed information.

  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Example] Efficiency improvement of repetitive calculations using the super element function.

Reduce the computational load of large-scale models!! It can also be utilized for information security!!

**Case Overview** ■Product Name: Simcenter Femap with Nastran ■Industry: Mechanical Components The super-element feature of Simcenter Nastran reduces computational load by dividing large models for analysis or by simplifying parts of the model (external super-elements), thus making the analysis model smaller and shortening computation time when changes are made to other parts. In this case, we validated the analysis accuracy and evaluated the reduction in computation time by simplifying the unchanged boss section as an external super-element and analyzing it in conjunction with the mesh model of the blade section during the eigenvalue design of the fan blades. This method saves computation time, especially in design phases where performance evaluations and repeated calculations at the component level are common, and the more unchanged parts there are, the more significant the benefits. Additionally, by converting in-house component models into super-elements and providing them to other companies, the shapes can be treated as black boxes, thus enhancing information security. □ For other features and details, please refer to the catalog.

  • Other machine elements

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Structural Analysis Example] Forging Analysis

The "MPP version of LS-DYNA" offers a remeshing feature that takes into account the density of the mesh!

In calculations involving large deformations, such as forging analysis, remeshing during the computation process is effective. In the standard remeshing function of LS-DYNA, the parts subject to remeshing are uniformly remeshed regardless of areas with large or small deformations, which can lead to a significant increase in the number of elements and potentially longer computation times. On the other hand, the "MPP version of LS-DYNA" offers a remeshing function that takes into account the density of the mesh. This allows for efficient progress in calculations involving large deformations. 【Features of MPP version LS-DYNA】 ■ Remeshing function that considers the density of the mesh is available ■ Efficiently advance calculations involving large deformations *For more details, please refer to the related links or feel free to contact us.

  • Structural Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Structural analysis software for designers, Altair Inspire.

Generative Design / Topology Optimization / Rapid Simulation

Altair Inspire is a structural and mechanical analysis software developed by Altair, a pioneer in topology optimization, for designers. It allows design engineers, product designers, and architects to easily and efficiently create and validate designs with excellent structural characteristics. Inspire utilizes the design concept generation and analysis technologies of Altair OptiStruct, which leads the industry, as well as motion analysis technology based on MotionSolve. The software is easy to learn and, when combined with existing CAD tools, helps reduce rework in structural design, costs, development time, material usage, and product weight. ■ Key Features of the Product - Generation and analysis of structurally efficient concepts - Support for optimization and analysis of parts and assemblies - Quick and easy cleanup and defeaturing (removal of unnecessary parts) of problem areas within shapes - Understanding of behavior for linear static analysis and modal analysis - User-friendly interface that can be learned in a short time - Analysis of complex mechanisms and verification and application of loads

  • Structural Analysis
  • Mechanism Analysis
  • Stress Analysis

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration