Introduction of analysis examples using "Particle-PLUS" Particle-PLUS also allows for the calculation of overlapping dual-frequency CCP.
"Particle-PLUS" is a simulation software suitable for the research, development, and manufacturing of devices and materials using plasma. - It specializes in low-pressure plasma analysis. - By combining axisymmetric models with mirror-symmetric boundary conditions, it can quickly obtain results without the need for simulations of the entire device. - It excels in plasma simulations in low-pressure gases, where calculations using fluid models are challenging. - It supports both 2D and 3D, allowing for efficient analysis even with complex models. - As a strength of our in-house developed software, customization to fit the customer's device is also possible. ◆ Supports various applications ◆ - Magnetron sputtering - PVD, plasma CVD - Capacitive coupled plasma (CCP) - Dielectric barrier discharge (DBD) - Electrophoresis, etc. ◆ Outputs various calculation results ◆ - Potential distribution - Density distribution/temperature distribution/generation distribution of electrons and ions - Particle flux and energy flux to the walls - Energy spectrum of electrons and ions at the walls - Density distribution/temperature distribution/velocity distribution of neutral gas, etc. *Please feel free to contact us for more details.
Inquire About This Product
basic information
**Features** - The time scheme uses an implicit method, allowing for stable time evolution calculations over a large time step Δt compared to conventional methods. - The collision reaction model between neutral gas and electrons and ions employs the Monte Carlo Scattering method, enabling accurate and rapid calculations of complex reaction processes. - The neutral gas module determines the initial neutral gas distribution used in the plasma module above, allowing for quick evaluation of gas flow using the DSMC method. - The sputtered particle module calculates the behavior of atoms sputtered from the target in plasma and neutral gas environments in magnetron sputtering devices, enabling quick evaluation of flux distribution on opposing substrates. *For other functions and details, please feel free to contact us.*
Price range
Delivery Time
P4
Applications/Examples of results
【Dual Frequency Capacitive Coupled Plasma】 - Optimization of voltage and other parameters to achieve high-density plasma - Damage to chamber walls - Optimization of power using external circuit models - It is possible to apply voltages to the electrode plates that align with real devices - The waveform of the applied voltage can be simulated smoothly and realistically - Calculations are relatively stable to avoid applying unreasonable voltages 【DC Magnetron Sputtering】 - Uniformity of erosion dependent on magnetic field distribution - Adsorption distribution of sputtered materials on the substrate 【Pulsed Voltage Magnetron Sputtering】 - Optimization of the application time of pulsed voltage for efficient material sputtering 【Ion Implantation】 - The influence of the substrate on the erosion distribution 【Time Evolution of Applied Voltage on Electrode Plates】 - Enables observation of physical quantities that are difficult to measure experimentally, such as electron density and ion velocity distribution - By investigating electron density and ion velocity distribution, it is possible to examine the uniformity of the film and the damage to the chamber walls - Changing calculation conditions allows for optimization of high-density plasma generation at low power
Detailed information
-
Time evolution of plasma particle number
-
Time evolution of accumulated charge on the electrode and dielectric surface.
-
Time evolution of electrode potential
-
Time evolution of J・E and J・dD/dt
-
Electron density distribution of RF cycle average in steady state.
-
Ar+ ion density distribution averaged over RF cycles in a steady state.
-
Potential distribution of RF cycle average in steady state.
-
Electron temperature distribution of the RF cycle average in a steady state.
-
Distribution of the RF cycle-averaged Ar+ ion flux on the HFE and LFE electrode surfaces in a steady state.
catalog(16)
Download All CatalogsCompany information
Our company develops and sells a "Maintenance Management System" for managing and operating various plants, factories, and other facilities and assets. Currently, this system is undergoing significant evolution into one that incorporates IoT technologies, such as sensor information and input from tablet devices, as well as AI technologies like machine learning, featuring functions for failure prediction and automatic scheduling. Additionally, as part of the recent trend towards digital transformation (DX), there is a growing movement to digitize and automate manufacturing processes and research and development sites in factories to enhance operational efficiency. In line with this trend, our company provides a solution aimed at improving efficiency in research and development environments, known as the Laboratory Information Management System (LIMS), which includes features such as workflow management, data tracking, data management, data analysis, and integration of electronic lab notebooks.