【事例集】材料研究のための機械学習
無機個体やポリマーなどにおけるケーススタディ!コストと時間効率の良い方法で、新しい化合物を設計
高品質の物理ベースのシミュレーションと機械学習アプローチは、 新規材料の研究を加速し、市場投入までの時間を短縮します。 ワークフローによって、代表的な機械学習の手法(部分的最小二乗回帰(PLS)法、重回帰分析(MLR)、主成分回帰(PCR)、カーネルPLS法)と、記述子とフィンガープリントの組み合わせで数百以上の予測モデルを自動作成し、その中から高い予測性能をもつモデルを選択することが可能(AutoQSAR)。 数千個以上のデータを持つデータセットに対しては、AutoQSAR同様に、ワークフローによってディープラーニング(深層学習)を用いた予測モデルを自動作成することが可能(DeepAutoQSAR, DeepChem/AutoQSAR)。 幅広い材料(ポリマー、分子、固体)の特性を表現するため、それぞれの系のためにカスタマイズされた効果的な記述子を使用可能。
- 企業:シュレーディンガー株式会社
- 価格:応相談