AFMデータ集
AFM :原子間力顕微鏡法
AFMは微細な探針で試料表面を走査し、ナノスケールの凹凸形状を三次元的に計測する手法です。 金属・半導体・酸化物などの材料評価だけでなく、毛髪やコンタクトレンズなどのソフトマテリアルまで幅広い材料を測定可能です。 本資料では、様々な材質のAFM像をご紹介します。
- 企業:一般財団法人材料科学技術振興財団 MST
- 価格:応相談
1~9 件を表示 / 全 9 件
AFM :原子間力顕微鏡法
AFMは微細な探針で試料表面を走査し、ナノスケールの凹凸形状を三次元的に計測する手法です。 金属・半導体・酸化物などの材料評価だけでなく、毛髪やコンタクトレンズなどのソフトマテリアルまで幅広い材料を測定可能です。 本資料では、様々な材質のAFM像をご紹介します。
大気中の分析により変質を抑えた定量評価が可能
毛髪表面にあるキューティクルの状態を、AFMにより解析した事例をご紹介します。 AFM は、ナノスケールの凹凸形状を三次元的に計測する手法です。大気中で分析を行うため、有機物の変質や脱ガスなどを起こさず、試料本来の形状を評価可能です。本事例では、キューティクルの開き具合や付着物成分の分布、領域ごとの粗さ評価を画像で評価した他、数値処理により定量的に凹凸を評価しました。シャンプー後の毛髪の状態評価や、整髪料を塗布後の塗布状態の評価に有効です。
大気中・水溶液中での試料構造変化の可視化
高分子は組成・構造を変えることで多様な機能が発現されることが知られており、様々な製品に利用されています。 高分子の評価においては、実環境での評価が重要です。今回は環境制御型AFM(原子間力顕微鏡)を用いて、大気中および水溶液中にて基板上の高分子形状を可視化した事例を紹介します。また、データ解析を併用することでポリマー粒子の分散具合を数値化しました。
食感を機械特性パラメータで定量化
食感を決める因子には、硬さ、凝着力など様々な要素があります。一般的に、食品の食感はテクスチャーアナライザー等による応力の評価で行いますが、微小領域の測定や薄い試料の測定は困難です。 AFM-MAは表面の凹凸の形状の評価に加え、機械特性の硬さを表すヤング率、質感のパラメータの凝着力、および、エネルギー散逸のデータを微小領域で計測することが可能です。このため、食感等に関係する物理特性を極微小な領域で評価するために有効です。
サンプル表面の形状変化をin situで評価
高分子には、温度や湿度・溶媒等の環境によって形状が変化する素材があり、評価する際の環境条件を変化させることで物性の知見を深めることができます。 今回は生分解性プラスチックで知られているポリカプロラクトン(PCL)を用いて加熱・冷却実験を行いました。ポリカプロラクトンは融点が約60℃であり、加熱により結晶状態からアモルファス状態へと変化する様子を、また冷却により再結晶化する様子を連続測定により動画観察いたしました。 測定法:AFM 製品分野:バイオテクノロジ・医薬品・日用品・食品 分析目的:形状評価 詳しくは資料をダウンロード、またはお問い合わせください。
ナノスケールの凹凸形状を三次元的に計測
AFMは、微細な探針で試料表面を走査し、ナノスケールの凹凸形状を三次元的に計測する手法です。 ・金属・半導体・酸化物など、絶縁体から軟質の有機物まで幅広い試料を測定可能 ・接触圧力が弱いタッピングモードを用いることで、試料ダメージを最小限に抑えることが可能
AFMにより、皮膚表面におけるナノスケールの凹凸を可視化
医薬品・化粧品の有効性・安全性試験において、近年動物実験代替法の開発が進められており、中でも三次元培養皮膚による試験方法が注目されています。本事例では、化粧品(ローション剤)の経皮吸収試験を実施した三次元培養ヒト皮膚を、AFM(原子間力顕微鏡法)で測定しました。皮膚表面の微小形状を視覚的に評価でき、また、任意の箇所の粗さを数値データで評価することも可能です。大気条件下で測定することにより、真空条件下での試料変質を抑えた観察が可能です。
デバイス特性に関わるトレンチ側壁の粗さを定量評価
近年、高耐圧デバイスの材料としてSiCが注目されています。Trench MOSFET構造は、素子の高集積化に必要であり、SiCデバイスへの応用展開が進められています。 Trench MOSFET構造のチャネル領域はトレンチ側壁であるためトレンチ側壁の平坦性がデバイスの信頼性に関わってきます。本資料ではSiC Trench MOSFETのトレンチ側壁の粗さについて、AFM(原子間力顕微鏡)を用いて定量的に評価した例を紹介します。
AFMによるステップ-テラス構造の可視化
ワイドギャップ半導体である窒化ガリウム(GaN)は、パワーデバイスや通信・光デバイスなどの幅広い分野で用いられています。デバイスを作製するうえで、ウエハ表面の形状と粗さはデバイス性能に大きく影響します。GaNウエハを成長させる際、支持基板との格子不整合などによる応力の影響で、表面にステップ-テラス構造が形成されます。本資料ではAFMを用いて、GaN基板表面のステップ-テラスの構造を可視化し、テラス幅、ステップ高さ、表面粗さ、オフ角を評価した事例を紹介します。 測定法:AFM 製品分野:パワーデバイス、 電子部品、 照明 分析目的:形状評価、 構造評価 詳しくは資料をダウンロード、またはお問い合わせください。