We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Construction method.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Construction method×E&Dテクノデザイン - List of Manufacturers, Suppliers, Companies and Products

Construction method Product List

16~30 item / All 32 items

Displayed results

[WIB Construction Method Case Study] Measures Against Machine Vibration in Manufacturing Plants

Improvement of the working environment! Introduction of a construction case where tire shred made of high-damping material was filled in the cell.

At Mitsui Sumitomo Construction in Ehime Prefecture, vibrations caused by machinery operation within the manufacturing plant were propagating to the adjacent office building (a four-story steel structure), resulting in significant vertical vibrations accompanied by a rumbling phenomenon on the 3rd and 4th floors, necessitating environmental improvements. As a solution, a passageway for transport vehicles was constructed between the manufacturing plant and the office building, and the 'WIB method' was implemented directly beneath it. Vibration measurements conducted before and after the countermeasures showed a reduction of 10 dB on the 1st floor, while the rumbling phenomenon was eliminated on the 3rd and 4th floors, resulting in a reduction of 15 to 17 dB. Additionally, the vibration level, which exceeded 70 dB before the countermeasures, dropped to below 60 dB afterward, improving the working environment. 【Case Summary】 ■ Location: Ehime Prefecture ■ Client: Mitsui Sumitomo Construction ■ Vibration Source: Factory vibrations ■ Target for Preservation: Adjacent office building ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for Medical Facilities

Filling tire shred with high damping material between the underground vibration barrier and the improved column row! A case where the work environment has been improved.

At SEIHA in Chiba Prefecture, vibrations from trains passing near medical facilities were interfering with operations involving precision equipment in medical rooms. In response, a 'WIB method' was implemented between the railway and the medical facility. A composite WIB design was created by utilizing existing underground vibration isolation walls, combining wall-like and slab-like structures. Based on the micro-vibration tolerance curve for precision equipment, target vibration reduction amounts and target reduction frequency bands were established. After the measures were implemented, vibrations in the target reduction frequency band were reduced to less than half, improving the operational environment. 【Case Summary】 ■ Location: Chiba Prefecture ■ Client: SEIHA Co., Ltd. ■ Vibration Source: Railway vibrations ■ Preservation Target: Precision equipment in medical facilities ■ Countermeasure Work: Wall-like WIB + Slab-like WIB ■ Construction Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for the Construction of New Expressways (1)

Measures were implemented between the construction area and the residential area! It was confirmed that ground vibrations are approximately 6dB lower, reducing vibrations by half!

In Mie Prefecture, there were concerns that the construction vibrations from the new highway would propagate to nearby residences. Therefore, the 'WIB method' was implemented between the construction area and the houses. After the measures were taken, a running test with a backhoe was conducted, comparing the vibrations at the unprotected and protected locations. As a result, it was confirmed that the ground vibrations at the protected location were approximately 6dB lower than those at the unprotected location, effectively halving the vibrations. 【Case Overview】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Protected Target: One nearby residence ■ Countermeasure: Wall-type WIB method (folding screen type) ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Traffic Vibration Mitigation for New Roads

Confirmed a reduction of more than 10dB, with vibrations reduced to one-third or less! Measures have been implemented directly beneath the road!

In Yamanashi Prefecture, with the establishment of new embankment roads, it became necessary to preserve the environment of residential areas along the route after the road opened. Therefore, the 'WIB method' was implemented directly beneath the road. A running test using a backhoe was conducted before and after the countermeasures (before road construction). As a result, a reduction of more than 10 dB was confirmed in both horizontal and vertical directions near the boundary between public and private land, and vibrations were reduced to less than one-third. [Case Summary] ■ Construction Location: Yamanashi Prefecture ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the road ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Residential Areas Along National Highways

Vibration measurements were conducted before and after the measures were implemented! A reduction of 4 to 5 dB in the vertical direction was confirmed!

In Saitama City, Saitama Prefecture, traffic vibrations from the national highway were affecting the living environment along the route, leading to complaints from residents. As a countermeasure, tire shred with high damping material was filled in the grid. Renovation work was carried out on the side road that runs between the national highway and residential areas, and the 'WIB method' was implemented directly beneath the road. Vibration measurements were conducted before and after the countermeasures, confirming a reduction of 4-5 dB in the vertical direction near the boundary between public and private properties. 【Case Overview】 ■ Construction Location: Saitama Prefecture ■ Client: Saitama City ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the national highway ■ Countermeasure Work: Wall-type WIB method (grid type) ■ Construction Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for the Construction of New Expressways (2)

Compared to areas without measures, the ground vibration in areas with measures is about 6dB to 7dB lower! Vibration reduced to less than 1/2!

In Mie Prefecture, there were concerns that the construction vibrations from the new highway would propagate to nearby public facilities. As a countermeasure, the 'WIB method' was implemented directly beneath the construction vehicle road. After the measures were taken, running tests and impact tests using a backhoe were conducted, comparing the vibrations at the unprotected and protected locations. As a result, it was confirmed that the ground vibrations at the protected locations were approximately 6dB to 7dB lower than those at the unprotected locations, reducing the vibrations to less than half. 【Case Summary】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Preservation Target: Nearby public facilities ■ Countermeasure: Plate-type WIB method (honeycomb cell type) ■ Installation Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Other services

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Existing Roads

Conducted driving tests with a 10-ton truck before and after the measures! We were able to achieve vibration reduction effects!

In Shizuoka Prefecture, vibration countermeasures were required in areas where complaints about vibrations had been occurring during road renovation work. As a result, the 'WIB method' was implemented directly beneath the road. Before and after the countermeasures, driving tests were conducted using a 10-ton truck. Vibration responses were measured and compared at the boundary between public and private properties along the road, on the ground within the site, and on the second floor of buildings. It was found that vibrations around the dominant frequency of 6Hz were reduced, achieving an average reduction of 10dB in the horizontal direction and 20dB in the vertical direction. [Case Summary] ■ Location: Shizuoka Prefecture ■ Client: Imamura Group Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several houses along the road ■ Countermeasure Method: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Pre-construction Vibration Simulation for Pile Driving Work

The impact of vibrations on residential areas and commercial facilities was found to be almost nonexistent, except for a very small range!

During the construction of a temporary platform for the sluice gate work, a vibro hammer was used to install the pile bridge pier. The impact of vibrations on surrounding residential and commercial facilities was evaluated through simulation analysis using the two-dimensional finite element method (2DFEM). Based on these results, the client conducted explanations of the vibration impact to nearby residents and surrounding commercial facility owners before the construction began. Some vibration effects were observed in residential areas close to the vibration source at the start of the pile driving, but the overall impact on residential and commercial facilities was minimal, with only a very limited area affected. 【Case Overview】 ■ Client: A certain construction consultant ■ Analysis Period: January 2020 ■ Cost: 1.77 million yen (excluding consumption tax, analysis fee for five measurement lines) ■ Vibration Source: Pile driving vibrations from a vibro hammer ■ Analysis Content: Evaluation of vibration impact on residential areas around the sluice gate *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (2)

Traffic vibrations transmitted from the ground have been reduced! An environment has been created that falls below regulatory standards after the measures were implemented!

At the model house along the main road in Chiba Prefecture, there were concerns about the impact of traffic vibrations on the living environment due to the proximity of a busy main road after the model house was newly constructed. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 12dB (about 1/4 of the original vibration). This model house is planned along a busy main road due to its appealing characteristics, but thanks to this construction, the traffic vibrations transmitted from the ground have been reduced, creating an expected quiet indoor environment suitable for the model house. 【Case Overview】 ■ Construction Location: Chiba Prefecture ■ Client: Tokyo Sekisui Heim Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the main road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF materials or feel free to contact us.

  • Other services

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (1)

Maintenance-free and semi-permanent! It creates a comfortable indoor environment without vibrations!

At the model house along the road in Tokyo, large vehicles pass by approximately every five minutes during the day, raising concerns about the impact of traffic vibrations on the living environment. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction of 10-12 dB (about 1/4 to 1/3 of the original vibration level). This installation is maintenance-free and semi-permanent, ensuring that even after the model house becomes a regular residence, a comfortable indoor environment free from vibrations will be maintained. 【Case Overview】 ■ Location: Tokyo ■ Client: Mitsui Home Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the road ■ Countermeasure: Plate-type WIB method (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Mitigation for Residential Buildings Along Subway Lines

Support beams were also installed! We were able to keep the vibration level below 50dB!

In Tokyo, residential buildings are located close to railways that run underground, raising concerns about the impact of railway vibrations on the living environment after the construction of new homes. To address this, the 'WIB method' was implemented directly beneath the residences. Since building support was necessary, support piles were also installed. After conducting vibration measurements before and after the implementation of the countermeasures, vibrations were reduced by 12 to 17 dB (from 1/7 to 1/4), successfully keeping the vibration level below 50 dB. 【Case Summary】 ■ Location: Tokyo ■ Client: Business owner ■ Vibration source: Railway vibrations ■ Preservation target: Residential buildings along the railway (underground) ■ Countermeasure method: Plate-type WIB (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, January 2019, Saitama Prefecture

Measures were implemented directly beneath each residence in Buildings A to E! The vibration level has been reduced to below 60 dB!

Some of the residential development plots in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of houses. Therefore, the 'WIB method' was implemented directly beneath each of the houses from Building A to Building E. Vibration measurements were conducted before and after the countermeasures. As a result, the dominant vibration at 10Hz was reduced by 14dB (to 1/5 of the original vibration), successfully keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Railway Vibration ■ Preservation Target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, September 2018, Saitama Prefecture

Concerns about the impact on the living environment after residential construction! Introducing examples aimed at increasing vibration reduction effects!

Some plots of a residential development in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of the houses. Therefore, the "WIB method" was implemented directly beneath the houses. In buildings D and E, where the vibration level exceeded 70dB before the measures were taken, the countermeasures were extended on the railway side to enhance the vibration reduction effect. After conducting vibration measurements before and after the measures, the dominant vibration at 10Hz was reduced by 6dB to 14dB (to 1/5 to 1/2 of the original vibration), successfully keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing manufacturer ■ Vibration source: Railway vibration ■ Preservation target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure: Plate-type WIB method (honeycomb cell type) ■ Installation position: Directly beneath the receiving side (partly on the propagation path) *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Mitigation for Residential Areas Along Elevated Bridges

Reduced vibrations of 4Hz by approximately 5dB and vibrations of 12.5 to 20Hz by approximately 10dB! The vibrations have become such that they do not affect livability!

The planned construction site for housing in Kanagawa Prefecture was experiencing traffic vibrations from the elevated bridge and the road in front of the site. As a countermeasure, we implemented measures directly beneath the apartment building. The vibrations from the elevated bridge were predominantly at 4Hz, while those from the road in front of the site ranged from 12.5 to 20Hz. We designed the 'WIB method' to address each type of vibration accordingly. As a result, we reduced the 4Hz vibrations by approximately 5dB and the 12.5 to 20Hz vibrations by about 10dB, ensuring that the vibrations did not affect the livability. [Case Overview] ■ Construction Location: Kanagawa Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Road Traffic Vibration ■ Preservation Target: Apartment Building (New, 3 Stories) ■ Countermeasure: Plate-type WIB Method (Honeycomb Cell Type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, January 2017, Saitama Prefecture

Measures were implemented directly beneath the residence! Dominant vibrations in the 10-20Hz range were reduced by 6-12dB!

Some plots of a residential development in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of houses. Therefore, the 'WIB method' was implemented directly beneath the houses. Vibration measurements were conducted before and after the countermeasures. Dominant vibrations in the range of 10-20Hz were reduced by 6-12dB (to 1/4 to 1/2 of the original vibrations), keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing manufacturer ■ Vibration source: Railway vibrations ■ Preservation target: Houses along the railway (total of 9 buildings; 5 buildings + 4 buildings) ■ Countermeasure work: Plate-type WIB method (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Other services
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration