We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for Simulation Software.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

Simulation Software(care) - List of Manufacturers, Suppliers, Companies and Products

Last Updated: Aggregation Period:Sep 03, 2025~Sep 30, 2025
This ranking is based on the number of page views on our site.

Simulation Software Product List

31~35 item / All 35 items

Displayed results

[Example] Efficient Optimization through Morphing 'CAESES'

Only the modified parts of the existing shape are defined by parameters! Various shapes can be created.

We will introduce efficient optimization using morphing with "CAESES," which we provide. It is mainly used in the shipbuilding and maritime industry, but the majority of users focus on full parametric modeling. In morphing (partial parametric modeling), the deformation of imported existing geometry is performed. Therefore, only the modified parts of the existing shape are defined by parameters, allowing for the creation of various shapes. 【Previous Morphing Features】 ■ Shift transformations ■ Lackenby shift ■ Free-Foam deformation (FFD) ■ Cartesian shifts ■ Spot transformations *For more details, please download the PDF or feel free to contact us.

  • 1.PNG
  • 2.PNG
  • 3.PNG
  • 4.PNG
  • 5.PNG
  • 6.PNG
  • 7.PNG
  • 8.PNG
  • 9.PNG
  • Other analysis software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of Container Ship Shape

Partial parametric modeling adopted! Deformation of the hull shape is defined.

One of the representative companies in China's shipping industry, MARIC (Marine Design & Research Institute of China), first utilized CAESES for a project focused on the optimization of hull shapes for container ships. In their research, MARIC engineers selected a baseline with excellent performance and attempted to reduce hull resistance at speeds of 18 knots and 27 knots. The constraints here were the length between perpendiculars, width, and draft, which were fixed values, while the variation in displacement was limited to ±0.5%. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • コンテナ船の形状最適化2.png
  • コンテナ船の形状最適化3.png
  • コンテナ船の形状最適化4.png
  • コンテナ船の形状最適化5.png
  • Other analyses

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

ProSim Plus

General-purpose steady-state process simulation and optimization software

ProSim Plus is a product of the French company Fives ProSim and is a general-purpose steady-state process simulator that includes optimization features. In addition to a rigorous thermodynamic model (also sold as a separate product called Simulis Thermodynamics), it is equipped with precise models of chemical engineering unit operations such as heat exchangers, reactors, distillation columns, absorption columns, and extraction columns, allowing for the modeling and simulation of large manufacturing processes, including complex recycling. Designed with the concept of Open Software, it enables users to add custom unit models and modify or extend standard models using Visual Basic. It complies with Cape-Open standards and allows for the integration of models from compatible external software for simulation.

  • simulator

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Research Material] World Market for Robot Simulators

Global Market for Robot Simulators: On-Premises, Cloud, Robot Manufacturing, Robot Maintenance, Others

This research report (Global Robotic Simulator Market) investigates and analyzes the current state and outlook for the global robotic simulator market over the next five years. It includes information on the overview of the global robotic simulator market, trends of major companies (sales, selling prices, market share), market size by segment, market size by major regions, and distribution channel analysis. The segments by type in the robotic simulator market focus on on-premise and cloud, while the segments by application cover robot manufacturing, robot maintenance, and others. The regional segments are categorized into North America, the United States, Europe, Asia-Pacific, Japan, China, India, South Korea, Southeast Asia, South America, the Middle East, and Africa to calculate the market size of robotic simulators. It also includes the market share of major companies in the robotic simulator market, product and business overviews, and sales performance.

  • Other services

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Optimization of the turbine blade shape of the turbocharger.

Introduction to the combination of CFD and stress analysis, as well as scallop turbine wheels!

FRIENDSHIP SYSTEMS, the developer of CAESES, has collaborated with MTU and Darmstadt University of Technology to develop a robust and variable turbine wheel geometry for turbochargers. The research, called Project GAMMA ("Efficient Gas Engines for Maritime Applications of the Next Generation"), aims to develop and prepare new technologies and interactions within the system for LNG/natural gas, which serves as fuel for efficient ship propulsion systems. *For more detailed information, please refer to the related links. You can download the PDF for more details or feel free to contact us.*

  • ターボチャージャーのタービンブレード形状最適化2.png
  • ターボチャージャーのタービンブレード形状最適化3.png
  • ターボチャージャーのタービンブレード形状最適化4.png
  • ターボチャージャーのタービンブレード形状最適化5.png
  • ターボチャージャーのタービンブレード形状最適化6.png
  • ターボチャージャーのタービンブレード形状最適化7.png
  • ターボチャージャーのタービンブレード形状最適化8.png
  • Structural Analysis
  • Turbine

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration