超音波洗浄機の製品一覧
- 分類:超音波洗浄機
61~90 件を表示 / 全 535 件
大阪空気機械製T型トラップの代替品・油回転・水封式真空ポンプの保護装置
- 真空ポンプ
《数千個/月の量産OK》ロボットで塗装を行うので再現性と安定した品質を実現!コストダウンのご提案も可能。
- アルミニウム
音圧測定データについて、時系列データのフィードバック解による、超音波伝搬状態の分類・評価技術ーー自己相関・バイスペクトルーー
- めっき装置
- 超音波洗浄機
- 振動監視

「R」フリーな統計処理言語かつ環境を利用した、超音波の音圧測定データ解析
自己回帰モデルによるフィードバック解析--自己相関、パワースペクトル、バイスペクトル-- 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:解析には下記ツールを利用します 注:「R」フリーな統計処理言語かつ環境 https://cran.ism.ac.jp/ autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数 mulmar:インパルス応答の解析関数 mulnos:パワー寄与率の解析関数 統計数理の考え方を参考に 対象物の音響特性・表面弾性波を考慮した オリジナル測定・解析手法を開発することで 振動現象に関する、詳細な各種効果の関係性について 新しい技術として開発しました。
--音圧測定解析評価に基づいて、低周波の共振現象と高周波の非線形現象を発振制御する技術--
- 超音波洗浄機
- めっき装置
- 微粉砕機

超音波発振制御システム(20MHz)カタログーー20MHzまでの発振制御による、900MHzまでの超音波制御ーー
超音波システム研究所は、 メガヘルツの超音波の発振制御が容易にできる 「発振システム(20MHz)」を製造販売しています。 システム概要(超音波発振システム(20MHz)) 内容(20MHzタイプ) 超音波発振プローブ 2本 ファンクションジェネレータ 1式 操作説明書 1式(USBメモリー) 特徴(20MHzタイプ) *超音波発振周波数 仕様 20kHz から 25MHz *出力範囲 5mVp-p~20Vp-p *サンプリングレート:200MSa/s 市販のファンクションジェネレータを利用したシステムです 目的に応じたファンクションジェネレータをセットにして 見積価格を提案します 標準参考例 発振システム20MHz 10万円(消費税10%込み)~ ファンクションジェネレータの価格・・・により変わります 2025. 3 装置固有の振動状態に合わせた、超音波の最適化技術を開発 2025. 4 メガヘルツ超音波を利用した「配管への超音波フィルター技術」を開発 2025. 4 「メガヘルツ超音波の洗浄技術」を開発

「R」フリーな統計処理言語かつ環境を利用した、超音波の音圧測定データ解析
自己回帰モデルによるフィードバック解析--自己相関、パワースペクトル、バイスペクトル-- 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:解析には下記ツールを利用します 注:「R」フリーな統計処理言語かつ環境 https://cran.ism.ac.jp/ autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数 mulmar:インパルス応答の解析関数 mulnos:パワー寄与率の解析関数 統計数理の考え方を参考に 対象物の音響特性・表面弾性波を考慮した オリジナル測定・解析手法を開発することで 振動現象に関する、詳細な各種効果の関係性について 新しい技術として開発しました。
多変量自己回帰モデルによるフィードバック解析技術を応用した、超音波の非線形制御システムを開発する技術
- その他工作機械
- 超音波洗浄機
- その他半導体製造装置

超音波の相互作用を評価する技術--自己回帰モデルによるフィードバック解析:パワー寄与率の解析--
超音波システム研究所は、 超音波の音圧測定による、時系列データを解析することで、 各種容器内の液体に伝搬する超音波と容器表面の超音波振動による 相互作用を解析評価する技術による分類技術を開発しました。 その結果、相互作用の評価に基づいた 超音波利用状態を制御可能にする、各種改善方法に発展しています。 具体的には、以下のような事例があります 1)超音波の発振周波数・出力レベルの選択基準の設定 2)超音波の発振制御条件の設定(例 ONOFF制御の時間設定) 3)水槽・超音波(振動子)の設置方法 4)液循環制御条件の設定 (例 複数のポンプによる各ONOFF制御条件設定) 5)水槽の強度に合わせた超音波出力の設定 6)超音波の利用目的に合わせた最適化 目的に合わせた、オリジナル超音波システムの開発が可能です。 ポイントは、超音波伝搬特性の確認です。 超音波のダイナミックな変化に対する、応答特性が最も重要です。 この特性により、高調波の発生可能範囲が決定します。

超音波の非線形現象(音響流)をコントロールする技術によるナノレベルの攪拌システム
超音波システム研究所は、 「超音波の非線形現象(音響流)を制御する技術」を利用した 効果的な攪拌(乳化・分散・粉砕)技術を開発しました。 この技術は 表面検査による間接容器、超音波水槽、その他事項具・・の 超音波伝搬特徴(解析結果)を利用(評価)して 超音波(キャビテーション・音響流)を制御します。 さらに、具体的な対象物の構造・材質・音響特性に合わせ、 効果的な超音波(キャビテーション・音響流)伝搬状態を、 ガラス容器・超音波・対象物・・の相互作用に合わせて、 超音波の発振制御により実現します。 特に、音響流制御による、高調波のダイナミック特性により ナノレベルの対応が実現しています 金属粉末をナノサイズに分散する事例から応用発展させました。 オリジナルの超音波伝搬状態の測定・解析技術により、 音響流の評価・・・・多数のノウハウ・・・を確認しています。 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析)
流水式洗浄機をはじめ、超音波カッターや超音波ウェルダーなど豊富な製品ラインアップを掲載!
- その他洗浄機
- その他計測・記録・測定器
- 超音波洗浄機

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ(鉄めっきの超音波伝搬特性の利用技術)
超音波システム研究所は、 ポリイミドフィルムに鉄めっきを行った部材を利用した 超音波発振制御プローブを開発しました。 この技術を、応用して、各種曲面への 「超音波・振動の計測、伝搬制御・・・」についてコンサルティング対応しています。 超音波プローブ:概略仕様 測定範囲 0.01Hz~100MHz 発振範囲 1kHz~25MHz 伝搬範囲 1kHz~900MHz以上 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 発振機器 例 ファンクションジェネレータ <対象物・設置状態・・・の音響特性>を把握することで 表面弾性波(伝搬状態)のダイナミック制御を実現しました。 各種目的(洗浄、攪拌・・)に合わせた伝搬状態を実現します 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:「R」統計処理 autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数
超音波の伝搬状態に関する計測・解析・評価技術を応用ーー超音波の最適制御ノウハウの提供ーー
- 超音波洗浄機
- めっき装置
- ホモジナイザー

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ(鉄めっきの超音波伝搬特性の利用技術)
超音波システム研究所は、 ポリイミドフィルムに鉄めっきを行った部材を利用した 超音波発振制御プローブを開発しました。 この技術を、応用して、各種曲面への 「超音波・振動の計測、伝搬制御・・・」についてコンサルティング対応しています。 超音波プローブ:概略仕様 測定範囲 0.01Hz~100MHz 発振範囲 1kHz~25MHz 伝搬範囲 1kHz~900MHz以上 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 発振機器 例 ファンクションジェネレータ <対象物・設置状態・・・の音響特性>を把握することで 表面弾性波(伝搬状態)のダイナミック制御を実現しました。 各種目的(洗浄、攪拌・・)に合わせた伝搬状態を実現します 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:「R」統計処理 autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数
超音波発振制御プローブによる、メガヘルツ超音波の表面処理技術--金属疲労強度の(表面残留応力の緩和・均一化)改善処理--
- 超音波洗浄機
- めっき装置
- その他表面処理装置

超音波振動子の表面残留応力の緩和技術を公開
超音波システム研究所は、 超音波の伝搬状態に関する、計測・解析・制御技術を応用して、 超音波(注)とファインバブル発生液循環システムによる、 超音波振動子の表面残留応力を緩和する技術を公開しました。 注:100kHz以下の超音波と、10MHz以上の超音波を利用 この表面残留応力を緩和する技術により 金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。 特に、超音波の伝搬状態を 対象物のガイド波(表面弾性波・・)を考慮した 設定・治工具・制御・・・により、 効果的な超音波照射条件・・・を実現させる方法を開発しました。 金属部品、樹脂部品、粉体部材、・・・の各種に対して 幅広い効果を確認しています。 超音波プローブ:概略仕様 測定範囲 0.01Hz~200MHz 発振範囲 1.0kHz~25MHz 伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認) 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 発振機器 例 ファンクションジェネレータ 測定機器 例 オシロスコープ

超音波のダイナミック制御技術ーー脱気・マイクロバブル発生液循環システムーー
超音波システム研究所は、 目的に合わせた効果的な超音波制御を実現するために、 <脱気・マイクロバブル発生液循環システム>を利用しています。 超音波液循環技術の説明 1)超音波専用水槽(オリジナル製造方法)を使用しています 2)水槽の設置は 1:専用部材を使用 2:固有振動と超音波周波数・出力の最適化を行っています 3)超音波振動子は専用部材を利用して設置しています (専用部材により、定在波、キャビテーション、音響流の 利用状態を制限できます) 4)脱気・マイクロバブル発生装置を使用します (標準的な、溶存酸素濃度は5-6mg/l) 5)水槽と超音波振動子は表面改質を行っています 上記の設定とマイクロバブルの拡散性により 均一な洗浄液の状態が実現します 均一な液中を超音波が伝搬することで 安定した超音波の状態が発生します この状態から 目的の超音波の効果(伝搬状態)を実現するために 液循環制御を行います 超音波、脱気装置、液循環ポンプ、・・の運転制御がノウハウです

超音波振動子の表面残留応力の緩和技術を公開
超音波システム研究所は、 超音波の伝搬状態に関する、計測・解析・制御技術を応用して、 超音波(注)とファインバブル発生液循環システムによる、 超音波振動子の表面残留応力を緩和する技術を公開しました。 注:100kHz以下の超音波と、10MHz以上の超音波を利用 この表面残留応力を緩和する技術により 金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。 特に、超音波の伝搬状態を 対象物のガイド波(表面弾性波・・)を考慮した 設定・治工具・制御・・・により、 効果的な超音波照射条件・・・を実現させる方法を開発しました。 金属部品、樹脂部品、粉体部材、・・・の各種に対して 幅広い効果を確認しています。 超音波プローブ:概略仕様 測定範囲 0.01Hz~200MHz 発振範囲 1.0kHz~25MHz 伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認) 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 発振機器 例 ファンクションジェネレータ 測定機器 例 オシロスコープ

メガヘルツ超音波の発振制御による、振動モードの改善技術
超音波システム研究所は、 超音波を利用した振動測定技術を開発しました。 この技術について「振動測定装置」として製造販売、 あるいは、「超音波を利用した振動測定技術」のコンサルティング対応しています。 ポイント 1)メガヘルツの超音波発振により、100kHz以下の振動が検出しやすくなります 2)メガヘルツ超音波の発振制御により、メガヘルツの振動モード検出が可能になります 振動測定用超音波プローブ:概略仕様 測定範囲 0.01Hz~100MHz 発振範囲 1kHz~25MHz 伝搬範囲 1kHz~900MHz以上 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 測定機器 例 オシロスコープ 発振機器 例 ファンクションジェネレータ 2025. 1 メガヘルツの流水式超音波システムを開発 2025. 1 メガヘルツ超音波による非線形伝搬現象のコントロール技術を開発 2025. 2 エアレーションとファインバブルと超音波の最適化技術を開発 2025. 3 装置固有の振動状態に合わせた、メガヘルツ超音波の最適化技術を開発
メガヘルツの超音波発振制御プローブを製造する技術--製造ノウハウのコンサルティング対応--
- 超音波洗浄機
- その他プロセス制御
- その他計測・記録・測定器

オリジナル超音波(音圧測定・発振制御)プローブの製造・開発技術
超音波システム研究所は、 部品検査、精密洗浄・・・に関して、 超音波による「音圧・振動」測定・解析技術を応用した、 超音波(音圧測定・発振制御)プローブの開発技術による、 コンサルティング対応を行っています。 超音波プローブの製造・開発・応用技術です。 利用目的に合わせた、超音波の伝搬状態を最適化できます。 特に、発振・受信の組み合わせによる 応答特性を利用した 部品検査やナノレベルの洗浄・攪拌・加工・・・に関して、 超音波振動の新しい利用が可能になるシステム技術です。 超音波プローブ:概略仕様 測定範囲 0.01Hz~100MHz 発振範囲 1kHz~25MHz 伝搬範囲 1kHz~900MHz以上(音圧データの解析確認) 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 測定機器 例 オシロスコープ 発振機器 例 ファンクションジェネレータ 振動特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析)
時系列データの多変量自己回帰モデルによるフィードバック解析::自己相関・パワースペクトル・バイスペクトル・・・
- 技術セミナー
- 超音波洗浄機
- 振動監視

メガヘルツ超音波を利用した「振動制御技術」(振動モードのコントロール・改善・調整)
超音波システム研究所は、 オリジナル製品(超音波システム)を利用した全く新しい、 振動をコントロールする技術を開発しました。 これまでに開発した、超音波の音圧測定解析・発振制御技術について、 超音波の非線形現象に関する解析・評価に基づいた、 メガヘルツ超音波の発振制御を行います。 ものの表面を伝搬する超音波のダイナミック特性を 測定・解析・評価したデータの蓄積から、 低周波(0.1Hz)~高周波(900MHz以上)の振動状態を <測定・解析・評価>できる技術を応用しています。 建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・ 溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・ 製造装置・システム全体の複雑な振動状態、・・・ に関して、新しい振動測定解析に基づいた対策が可能になりました。 2025. 3 装置固有の振動状態に合わせた、メガヘルツ超音波の最適化技術を開発 2025. 4 メガヘルツ超音波を利用した「配管への超音波フィルター技術」を開発
市販のファンクションジェネレータと超音波発振プローブを利用した、超音波の発振制御システム
- その他半導体製造装置
- その他表面処理装置
- 超音波洗浄機

超音波プローブの超音波発振制御による非線形伝搬制御技術を開発
超音波システム研究所は、 オリジナル製品:超音波テスター専用プローブに関する、 超音波<発振制御>技術を応用した、 高調波を含めた超音波伝搬状態をコントロールする技術を開発しました。 超音波を利用した 洗浄、加工、表面処理、検査、・・・への新しい基礎技術です。 弾性波動に関する工学的(実験・技術)な視点と 抽象代数学の超音波モデルにより 基礎実験の確認から、効果的な超音波加工方法として開発しました。 様々な分野への応用・利用が可能になると考えています 各種コンサルティングにおいて提案・対応していきます。 振動特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:「R」フリーな統計処理言語かつ環境 autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数 mulmar:インパルス応答の解析関数 mulnos:パワー寄与率の解析関数
音と超音波の組み合わせ技術ーー低周波の共振現象と高周波の非線形現象を最適化する技術ーー
- 超音波洗浄機
- その他表面処理装置
- 振動監視

超音波プローブの超音波発振制御による非線形伝搬制御技術を開発
超音波システム研究所は、 オリジナル製品:超音波テスター専用プローブに関する、 超音波<発振制御>技術を応用した、 高調波を含めた超音波伝搬状態をコントロールする技術を開発しました。 超音波を利用した 洗浄、加工、表面処理、検査、・・・への新しい基礎技術です。 弾性波動に関する工学的(実験・技術)な視点と 抽象代数学の超音波モデルにより 基礎実験の確認から、効果的な超音波加工方法として開発しました。 様々な分野への応用・利用が可能になると考えています 各種コンサルティングにおいて提案・対応していきます。 振動特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析) 注:「R」フリーな統計処理言語かつ環境 autcor:自己相関の解析関数 bispec:バイスペクトルの解析関数 mulmar:インパルス応答の解析関数 mulnos:パワー寄与率の解析関数
ーー900MHz以上の超音波伝搬状態を制御可能にする、超音波プローブの製造技術を開発ーー
- 超音波洗浄機
- その他工作機械
- ホモジナイザー

超音波の非線形現象(音響流)をコントロールする技術によるナノレベルの攪拌システム
超音波システム研究所は、 「超音波の非線形現象(音響流)を制御する技術」を利用した 効果的な攪拌(乳化・分散・粉砕)技術を開発しました。 この技術は 表面検査による間接容器、超音波水槽、その他事項具・・の 超音波伝搬特徴(解析結果)を利用(評価)して 超音波(キャビテーション・音響流)を制御します。 さらに、具体的な対象物の構造・材質・音響特性に合わせ、 効果的な超音波(キャビテーション・音響流)伝搬状態を、 ガラス容器・超音波・対象物・・の相互作用に合わせて、 超音波の発振制御により実現します。 特に、音響流制御による、高調波のダイナミック特性により ナノレベルの対応が実現しています 金属粉末をナノサイズに分散する事例から応用発展させました。 オリジナルの超音波伝搬状態の測定・解析技術により、 音響流の評価・・・・多数のノウハウ・・・を確認しています。 超音波の伝搬特性 1)振動モードの検出(自己相関の変化) 2)非線形現象の検出(バイスペクトルの変化) 3)応答特性の検出(インパルス応答の解析) 4)相互作用の検出(パワー寄与率の解析)
超音波プローブ、超音波発振制御システムの開発技術ーー圧電素子のエージング処理ーー
- 超音波洗浄機
- 技術セミナー
- その他計測・記録・測定器

900MHz以上の超音波伝搬状態を制御可能にする、オリジナル超音波プローブのオーダーメード対応
超音波システム研究所は、 900MHz以上の超音波伝搬状態を制御可能にする 超音波プローブのオーダーメード対応を行っています。 目的に合わせた、 オリジナル超音波発振制御プローブを製造開発対応します。 ポイントは、オリジナルプローブの動作確認です。 超音波の送受信について、ダイナミックな変化に対する 応答性が最も重要です。 この特性により、高調波の応用範囲が決定します。 現状では、以下の範囲について対応可能となっています。 超音波プローブ:概略仕様 測定範囲 0.01Hz~100MHz 発振範囲 0.5kHz~ 25MHz 伝搬範囲 0.5kHz~900MHz以上(解析確認) 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・ 発振機器 例 ファンクションジェネレータ <金属・樹脂・ガラス・・・の音響特性>を把握することで 発振制御により、音圧レベル、周波数、ダイナミック特性について 目的に合わせた伝搬状態を実現します 超音波伝搬状態の測定・解析・評価技術に基づいた、基礎技術です。
オリジナル製品(超音波テスター)を利用した全く新しい、<<振動計測技術>>を開発しました。
- その他プロセス制御
- その他計測・記録・測定器
- 超音波洗浄機

超音波の音圧データ解析・評価技術(パワースペクトル、自己相関、バイスペクトル、・・・)
超音波システム研究所は、 多変量自己回帰モデルによるフィードバック解析技術を応用した、 「超音波の伝搬状態を測定・解析・評価する技術」を利用して 超音波利用に関するコンサルティング対応を行っています。 超音波テスターを利用したこれまでの 計測・解析・結果(注)を時系列に整理することで 目的に適した超音波の状態を示す 新しい評価基準(パラメータ)を設定・確認します。 注: 非線形特性(音響流のダイナミック特性) 応答特性 ゆらぎの特性 相互作用による影響 統計数理の考え方を参考に 対象物の音響特性・表面弾性波を考慮した オリジナル測定・解析手法を開発することで 振動現象に関する、詳細な各種効果の関係性について 新しい理解を深めています。 その結果、 超音波の伝搬状態と対象物の表面について 新しい非線形パラメータが大変有効である事例による 実績が増えています。 特に、洗浄・加工・表面処理効果に関する評価事例・・ 良好な確認に基づいた、制御・改善・・・が実現します。

脱気ファインバブル発生液循環装置 --洗浄液の均一化と音響流制御技術--
超音波システム研究所は、 超音波の制御を効率良く行うことができる <<脱気ファインバブル(マイクロバブル)発生液循環装置>>の 製造・開発方法・・をコンサルティング対応しています。 <<脱気ファインバブル(マイクロバブル)発生液循環装置>> 1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。 2)キャビテーションにより溶存気体の気泡が発生します。 上記が脱気液循環装置の状態です 3)溶存気体の濃度が低下すると キャビテーションによる溶存気体の気泡サイズが小さくなります。 4)適切な液循環により、 20μ以下のファインバブル(マイクロバブル)が発生します。 上記が脱気マイクロバブル発生液循環装置の状態です。 5)上記の脱気ファインバブル(マイクロバブル)発生液循環装置に対して 超音波を照射すると ファインバブル(マイクロバブル)を超音波が分散・粉砕して ファインバブル(マイクロバブル)の測定を行うと ウルトラファインバブルの分布量がファインバブルの分布量より多くなります 上記の状態が、超音波を安定して制御可能にした状態です。

超音波発振制御システム(20MHz)カタログーー20MHzまでの発振制御による、900MHzまでの超音波制御ーー
超音波システム研究所は、 メガヘルツの超音波の発振制御が容易にできる 「発振システム(20MHz)」を製造販売しています。 システム概要(超音波発振システム(20MHz)) 内容(20MHzタイプ) 超音波発振プローブ 2本 ファンクションジェネレータ 1式 操作説明書 1式(USBメモリー) 特徴(20MHzタイプ) *超音波発振周波数 仕様 20kHz から 25MHz *出力範囲 5mVp-p~20Vp-p *サンプリングレート:200MSa/s 市販のファンクションジェネレータを利用したシステムです 目的に応じたファンクションジェネレータをセットにして 見積価格を提案します 標準参考例 発振システム20MHz 10万円(消費税10%込み)~ ファンクションジェネレータの価格・・・により変わります 2025. 3 装置固有の振動状態に合わせた、超音波の最適化技術を開発 2025. 4 メガヘルツ超音波を利用した「配管への超音波フィルター技術」を開発 2025. 4 「メガヘルツ超音波の洗浄技術」を開発

超音波伝搬現象の分類ーー音圧測定解析に基づいた、キャビテーションと音響流・表面弾性波の最適化技術ーー
超音波システム研究所は、 超音波伝搬状態の測定・解析により、 超音波振動が伝搬する現象に関する分類方法を開発しました。 この分類方法は、 超音波の伝搬状態に関する 主要となる周波数(パワースペクトル)の ダイナミック特性(非線形現象の変化)により 線形・非線形の共振効果を推定します。 これまでのデータ解析から 効果的な利用方法を 以下のような 4つのタイプに分類することができました。 1:線形型 2:非線形型 3:ミックス型 4:変動型 さらに変動型は、以下のような 3つのタイプに分類することができました。 1:線形変動型 2:非線形変動型 3:ミックス変動型(ダイナミック変動型) 上記の各タイプに基づいた装置開発・制御設定・検査・・・ 超音波技術の応用に関して成功事例が多数あります。 特に、 安定性・変化の状態・・・に関して 周波数成分による詳細な分類により、 目的と効果に対する、効率のよい 各種条件の設定・調整が可能になりました。