We have compiled a list of manufacturers, distributors, product information, reference prices, and rankings for movie.
ipros is IPROS GMS IPROS One of the largest technical database sites in Japan that collects information on.

movie Product List and Ranking from 54 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Dec 24, 2025~Jan 20, 2026
This ranking is based on the number of page views on our site.

movie Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Dec 24, 2025~Jan 20, 2026
This ranking is based on the number of page views on our site.

  1. LinkStudio Fukuoka//Educational and Research Institutions
  2. 松井製作所 Osaka//Ferrous/Non-ferrous metals
  3. ベンカン機工 Gunma//Ferrous/Non-ferrous metals
  4. 4 リナック 日本支社 Kanagawa//Machine elements and parts
  5. 5 エスユーエス 京都本社 Kyoto//IT/Telecommunications

movie Product ranking

Last Updated: Aggregation Period:Dec 24, 2025~Jan 20, 2026
This ranking is based on the number of page views on our site.

  1. Reasons and solutions for employees not following safety rules. LinkStudio
  2. Visualizing the reasons for the continued "labeling mistakes." LinkStudio
  3. A thorough explanation of the self-holding power and brakes of electric cylinders in a video! リナック 日本支社
  4. A story about how the new employee's slow work improved after reevaluating the training. LinkStudio
  5. 4 A video that explains the mandrel manufacturing process. ベンカン機工

movie Product List

346~360 item / All 499 items

Displayed results

[For the Automotive Industry] Basic Explanation Video on Concentricity and Coaxiality

Contributing to the improvement of precision in automotive parts!

In the automotive industry, the precision of component assembly significantly affects the quality and performance of products. Particularly for rotating and sliding parts, the accuracy of concentricity and coaxiality is crucial. Low precision in these areas can lead to vibrations, unusual noises, premature wear of components, and in the worst case, functional failure. This video explains the basics of "concentricity and coaxiality," a type of geometric tolerance, and supports problem-solving in the design and manufacturing of automotive parts. 【Usage Scenarios】 * Design and manufacturing of automotive parts * Education in quality control departments * Technical guidance in manufacturing sites 【Benefits of Implementation】 * Deepening understanding of concentricity and coaxiality, leading to improved quality in design and manufacturing * Increased efficiency in component production through enhanced drawing interpretation skills * Early detection and countermeasures for quality issues

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[For Machine Tools] Geometric Tolerances: Concentricity and Coaxiality Basic Explanation Video

Contributing to the improvement of quality in high-precision machining!

In the machine tool industry, high-precision component processing is required. In particular, the accuracy of concentricity and coaxiality is a crucial factor that affects the quality and performance of products. If these geometric tolerances are not properly managed, it can lead to processing defects or issues during assembly, potentially resulting in a decline in the performance of the final product. This video explains the basics of "concentricity and coaxiality," which are types of geometric tolerances, and supports problem-solving in quality management for high-precision processing. 【Usage Scenarios】 - Design and manufacturing of machine tool components - Quality management in high-precision processing - Improvement of drawing interpretation skills 【Benefits of Introduction】 - Deepen understanding of concentricity and coaxiality, improving processing accuracy - Accurately understand the intent of drawing instructions, reducing the occurrence of quality issues - Facilitate communication on the processing floor

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[For Medical Devices] Explanation Video on Concentricity and Coaxiality

Explaining the basics of concentricity and coaxiality in the design and manufacturing of medical devices!

In the medical device industry, precise positioning of components is essential to ensure product safety and reliability. Particularly in medical devices that require precise operation, the accuracy of concentricity and coaxiality of components significantly affects the product's performance and safety. Deficiencies in concentricity and coaxiality can lead to equipment malfunctions and risks to patients. This video explains the basics of "concentricity and coaxiality," which are types of geometric tolerances. 【Application Scenarios】 - Design of medical devices - Manufacturing of medical devices - Quality control 【Benefits of Implementation】 - Improvement of quality at the design stage - Reduction of defect rates in the manufacturing process - Enhancement of product safety and reliability

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[For Semiconductor Manufacturing] Geometric Tolerances: Concentricity and Coaxiality Basic Explanation Video

Learn the basics of geometric tolerances in semiconductor manufacturing to improve yield!

In the semiconductor manufacturing industry, there is always a demand for improved product quality and yield. Particularly in areas where fine processing technology is crucial, the precision of components significantly affects product performance. Inaccuracies in concentricity and coaxiality can lead to product defects and performance degradation, which in turn worsen yield. This video explains the basics of "concentricity and coaxiality," a type of geometric tolerance, and provides foundational knowledge for quality control in semiconductor manufacturing. Use this video as a reference to deepen your understanding of concentricity and coaxiality and to aid in yield improvement. 【Application Scenarios】 - Design and manufacturing of components in semiconductor manufacturing - Education in quality control departments - Technical guidance on the manufacturing floor 【Effects of Implementation】 - Deepen understanding of geometric tolerances and reduce mistakes in the design and manufacturing stages - Improve quality control capabilities and reduce the rate of defective products - Contribute to yield improvement and cost reduction

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[For Robots] Explanation Video on Concentricity and Coaxiality

Explaining the basics of geometric tolerances to improve the stability of robot movements!

In the robotics industry, precise movements and high durability are required. In particular, the accurate positioning of arms and joints is a crucial factor that influences the performance of robots. Deficiencies in concentricity and coaxiality can lead to unstable movements and premature wear of components. This video explains the basics of "concentricity and coaxiality," a type of geometric tolerance, and supports problem-solving in the design and manufacturing of robots. [Application Scenes] - Assembly of robotic arms - Manufacturing of precision equipment - Improvement of positioning accuracy [Effects of Implementation] - Improved operational accuracy of robots - Extended lifespan of components - Stabilization of quality

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Explanation video on concentricity and coaxiality for optical instruments.

Explaining the fundamentals of geometric tolerances essential for improving the performance of optical instruments!

In the optical equipment industry, high precision is required in the assembly of precision components such as lenses and barrels. In particular, misalignment of the optical axis can lead to a decrease in optical performance and distortion of images. Understanding concentricity and coaxiality is essential for solving these issues and maximizing product performance. This video explains the definitions of concentricity and coaxiality, examples of their use, how they are represented in drawings, and points to consider, supporting problem-solving in the design and manufacturing of optical equipment. 【Usage Scenarios】 - Design and manufacturing of precision components such as lenses and barrels - Quality control of optical equipment - Performance evaluation of products 【Benefits of Implementation】 - Improvement of optical equipment performance - Enhancement of product quality - Streamlining of design and manufacturing processes

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Video explanation of concentricity and coaxiality for watch manufacturing.

Explaining the basics of geometric tolerances in watch manufacturing!

In the watch manufacturing industry, the assembly of precise components is required, and the accuracy of concentricity and coaxiality affects the quality of the products. Particularly in precision parts such as movements, even a slight misalignment can lead to functional failures. This video explains the definitions of concentricity and coaxiality, examples of their use, how they are represented in drawings, and points to be aware of, contributing to the improvement of quality control in watch manufacturing. 【Usage Scenarios】 - Manufacturing of movement components - Processing of case components - High-precision assembly processes 【Effects of Implementation】 - Stabilization of quality - Reduction of defect rates - Improvement of product reliability

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[For the automotive industry] Geometric Tolerances Positioning Basic Explanation Video

Contributing to the improvement of precision in automotive parts! Explaining the basics of positional accuracy.

In the automotive industry, high precision is required to ensure the quality and performance of parts. This is especially true for critical components such as engines and transmissions, where an understanding of positional tolerance and appropriate instructions are essential. Misinterpretation of positional tolerance or inappropriate instructions can lead to assembly defects and performance degradation. This video explains the basics of "positional tolerance," a type of geometric tolerance. It covers the definition of positional tolerance, examples of its use, how it is represented on drawings, and points to be aware of in its application, supporting problem-solving in the design and manufacturing of automotive parts. By watching this video, you can deepen your understanding of positional tolerance and contribute to the improvement of automotive parts quality. 【Application Scenarios】 - Design of automotive parts - Quality control in manufacturing sites - Training for engineers 【Benefits of Implementation】 - Improvement of part accuracy - Reduction of assembly defects - Increased efficiency in quality management

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Aerospace Positioning Fundamentals Video

Explaining the fundamentals of positioning in the aerospace field!

In the aerospace industry, the reliability and safety of products are of utmost importance. Weight reduction is essential for improving fuel efficiency and performance, and precise manufacturing of parts is required. Positional tolerance is one of the important geometric tolerances that ensure the dimensional accuracy of parts. This video explains the definition of positional tolerance, its usage scenarios, how it is represented in drawings, and points to be aware of when using it. By deepening the understanding of positional tolerance, we contribute to quality improvement in design and manufacturing. 【Usage Scenarios】 - Design and manufacturing of aircraft parts - Manufacturing of components for space exploration vehicles - Manufacturing of parts where weight reduction is required 【Effects of Implementation】 - Improvement in part quality - Reduction of design errors - Reduction of manufacturing costs

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Basic Explanation Video on Positioning for Machine Tools

A clear explanation of the basics of positional degree in a video!

In the machine tool industry, high-precision machining of parts is required to improve product quality and performance. In particular, understanding positional tolerance is essential for achieving accurate machining according to drawing specifications. Misunderstandings or improper interpretations of positional tolerance can lead to defective parts and decreased assembly accuracy. This video explains the basics of "positional tolerance," a type of geometric tolerance. 【Usage Scenarios】 - Design and manufacturing of machine tool parts - Quality control of high-precision machining - Improvement of drawing interpretation skills 【Benefits of Implementation】 - Deepens understanding of positional tolerance and enhances drawing interpretation abilities - Achieves high-precision part machining and improves product quality - Contributes to the reduction of defective products and cost savings

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Video explaining positional accuracy for 3D printing

Deepen your understanding of positional accuracy in 3D printing!

In the 3D printing industry, the accuracy of the printed objects greatly affects the quality of the products. This is especially true when combining multiple parts or when products require precise movements, making the understanding of positional tolerance essential. Misunderstandings or inaccurate interpretations of positional tolerance can lead to defects in the printed objects or assembly failures. This video explains the basics of "positional tolerance," a type of geometric tolerance. It covers the definition of positional tolerance, examples of its use, how it is represented in drawings, and points to be cautious about when using it. Please make use of this information to produce high-quality printed objects with your 3D printer. 【Usage Scenarios】 - When manufacturing precision parts with a 3D printer - During the design and manufacturing of products that combine multiple parts - When conducting quality control of printed objects 【Benefits of Implementation】 - Deepening the understanding of positional tolerance and improving the accuracy of printed objects - Reducing mistakes during the design and manufacturing stages - Ensuring a stable supply of high-quality products

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

What is positional accuracy for optical devices? An explanation of the basics!

I will answer the question, 'What is positionality?'

In the optical equipment industry, precise positioning of components is required to maintain product performance. Particularly with precision parts such as lenses and sensors, even slight deviations in positioning can lead to a decline in optical performance. Improper positioning can cause image distortion and reduced resolution. This video explains the basics of "position tolerance," a type of geometric tolerance. By understanding the definition of position tolerance, how it is used in drawings, and points to be aware of, it can contribute to quality improvement in the design and manufacturing of optical equipment. 【Application Scenarios】 - Positioning of optical lenses - Installation of sensors - Assembly of precision parts 【Benefits of Implementation】 - Improvement of optical performance - Enhancement of product quality - Improvement of yield

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Positioning Explanation Video for Watch Manufacturing

Explaining the basics of positional accuracy! Improving quality in watch manufacturing.

In the watch manufacturing industry, precise positioning of components is essential to ensure product durability. Particularly in the case of intricate movements and exterior parts, the positional accuracy of each component significantly impacts the product's lifespan and performance. A lack of understanding of positional tolerances or improper instructions can lead to assembly defects or functional failures. This video explains the basics of "position tolerance," a type of geometric tolerance. It covers the definition of position tolerance, examples of its use, how it is represented in drawings, and points to consider when using it. Understanding the importance of position tolerance in watch manufacturing will help improve quality. 【Usage Scenarios】 - Manufacturing movement components - Assembling exterior parts - Education in quality control departments 【Benefits of Implementation】 - Improved assembly accuracy of components - Enhanced product durability - Reduction of defective products - Increased quality management capabilities

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Aerospace] Geometric Tolerance Symmetry Basic Explanation Video

Explaining the basics of symmetry in a video!

In the aerospace industry, reducing the weight of products is essential for improving fuel efficiency and performance. Understanding and applying geometric tolerances correctly during the design phase is important for ensuring both weight reduction and product reliability. A lack of understanding of symmetry can lead to manufacturing errors in parts, potentially adversely affecting the performance of the final product. This video explains the basics of "symmetry," a type of geometric tolerance. It covers the definition of symmetry, examples of its use, how it is represented in drawings, and points to consider when using it. By watching this video, designers will be able to understand symmetry correctly and apply it in their designs. [Application Scenarios] - Design of aerospace components - Quality control in manufacturing processes - Technical education [Benefits of Introduction] - Reducing errors during the design phase - Improving quality in manufacturing processes - Enhancing the knowledge of engineers

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Basic Explanation of Geometric Tolerances for Molds: Symmetry

Explaining the basics of symmetry that are useful for mold design and manufacturing!

In the mold industry, it is important to manufacture molds with precision according to the drawings in order to enhance the durability of the products. In particular, symmetry has a significant impact on the strength and functionality of the mold, making its understanding essential. If the symmetry specifications are not appropriate, it may lead to early mold failure or a decrease in product accuracy. This video explains the basics of "symmetry," which is a type of geometric tolerance. 【Application Scenarios】 - During the design phase of molds - Quality control during mold manufacturing - When interpreting drawings 【Effects of Implementation】 - Deepening the understanding of symmetry and improving the accuracy of mold design - Streamlining quality control in mold manufacturing - Reducing mold-related issues through accurate understanding of drawing specifications

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration