iPROS Manufacturing
  • Search for products by classification category

    • Electronic Components and Modules
      Electronic Components and Modules
      56026items
    • Machinery Parts
      Machinery Parts
      70883items
    • Manufacturing and processing machinery
      Manufacturing and processing machinery
      95516items
    • Scientific and Physics Equipment
      Scientific and Physics Equipment
      33048items
    • Materials
      Materials
      34895items
    • Measurement and Analysis
      Measurement and Analysis
      52796items
    • Image Processing
      Image Processing
      14573items
    • Control and Electrical Equipment
      Control and Electrical Equipment
      50342items
    • Tools, consumables, and supplies
      Tools, consumables, and supplies
      62908items
    • Design and production support
      Design and production support
      11724items
    • IT/Network
      IT/Network
      40453items
    • Office
      Office
      13170items
    • Business support services
      Business support services
      32004items
    • Seminars and Skill Development
      Seminars and Skill Development
      5796items
    • Pharmaceutical and food related
      Pharmaceutical and food related
      23523items
    • others
      59606items
  • Search for companies by industry

    • Manufacturing and processing contract
      7353
    • others
      5045
    • Industrial Machinery
      4430
    • Machine elements and parts
      3290
    • Other manufacturing
      2872
    • IT/Telecommunications
      2519
    • Trading company/Wholesale
      2455
    • Industrial Electrical Equipment
      2314
    • Building materials, supplies and fixtures
      1819
    • software
      1648
    • Electronic Components and Semiconductors
      1575
    • Resin/Plastic
      1495
    • Service Industry
      1405
    • Testing, Analysis and Measurement
      1131
    • Ferrous/Non-ferrous metals
      979
    • environment
      701
    • Chemical
      630
    • Automobiles and Transportation Equipment
      560
    • Printing Industry
      506
    • Information and Communications
      434
    • Consumer Electronics
      422
    • Energy
      321
    • Rubber products
      311
    • Food Machinery
      303
    • Optical Instruments
      283
    • robot
      274
    • fiber
      250
    • Paper and pulp
      232
    • Electricity, Gas and Water Industry
      172
    • Pharmaceuticals and Biotechnology
      165
    • Warehousing and transport related industries
      145
    • Glass and clay products
      142
    • Food and Beverage
      134
    • CAD/CAM
      121
    • retail
      110
    • Educational and Research Institutions
      108
    • Medical Devices
      101
    • Ceramics
      96
    • wood
      87
    • Transportation
      83
    • Petroleum and coal products
      61
    • Medical and Welfare
      61
    • Shipbuilding and heavy machinery
      52
    • Aviation & Aerospace
      47
    • Fisheries, Agriculture and Forestry
      39
    • self-employed
      23
    • Public interest/special/independent administrative agency
      22
    • equipment
      19
    • Mining
      17
    • Research and development equipment and devices
      16
    • Materials
      16
    • Government
      14
    • Finance, securities and insurance
      13
    • Individual
      10
    • Restaurants and accommodations
      8
    • cosmetics
      8
    • Police, Fire Department, Self-Defense Forces
      7
    • Laboratory Equipment and Consumables
      3
    • Contracted research
      3
    • Raw materials for reagents and chemicals
      2
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Electronic Components and Modules
  • Machinery Parts
  • Manufacturing and processing machinery
  • Scientific and Physics Equipment
  • Materials
  • Measurement and Analysis
  • Image Processing
  • Control and Electrical Equipment
  • Tools, consumables, and supplies
  • Design and production support
  • IT/Network
  • Office
  • Business support services
  • Seminars and Skill Development
  • Pharmaceutical and food related
  • others
Search for Companies
  • Search for companies by industry

  • Manufacturing and processing contract
  • others
  • Industrial Machinery
  • Machine elements and parts
  • Other manufacturing
  • IT/Telecommunications
  • Trading company/Wholesale
  • Industrial Electrical Equipment
  • Building materials, supplies and fixtures
  • software
  • Electronic Components and Semiconductors
  • Resin/Plastic
  • Service Industry
  • Testing, Analysis and Measurement
  • Ferrous/Non-ferrous metals
  • environment
  • Chemical
  • Automobiles and Transportation Equipment
  • Printing Industry
  • Information and Communications
  • Consumer Electronics
  • Energy
  • Rubber products
  • Food Machinery
  • Optical Instruments
  • robot
  • fiber
  • Paper and pulp
  • Electricity, Gas and Water Industry
  • Pharmaceuticals and Biotechnology
  • Warehousing and transport related industries
  • Glass and clay products
  • Food and Beverage
  • CAD/CAM
  • retail
  • Educational and Research Institutions
  • Medical Devices
  • Ceramics
  • wood
  • Transportation
  • Petroleum and coal products
  • Medical and Welfare
  • Shipbuilding and heavy machinery
  • Aviation & Aerospace
  • Fisheries, Agriculture and Forestry
  • self-employed
  • Public interest/special/independent administrative agency
  • equipment
  • Mining
  • Research and development equipment and devices
  • Materials
  • Government
  • Finance, securities and insurance
  • Individual
  • Restaurants and accommodations
  • cosmetics
  • Police, Fire Department, Self-Defense Forces
  • Laboratory Equipment and Consumables
  • Contracted research
  • Raw materials for reagents and chemicals
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Testing, Analysis and Measurement
  3. 一般財団法人材料科学技術振興財団 MST
  4. Product/Service List
Testing, Analysis and Measurement
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration

一般財団法人材料科学技術振興財団 MST

EstablishmentAugust 1, 1984
addressTokyo/Setagaya-ku/Kitaomi 1-18-6
phone03-3749-2525
  • Special site
  • Official site
last updated:May 26, 2025
一般財団法人材料科学技術振興財団 MSTlogo
  • Contact this company

    Contact Us Online
  • Company information
  • Products/Services(737)
  • catalog(688)
  • news(227)

一般財団法人材料科学技術振興財団 MST List of Products and Services

  • category

1~36 item / All 36 items

Displayed results

Filter by category

Mass spectrometry Mass spectrometry
Photoelectron spectroscopy Photoelectron spectroscopy
[Measurement Method] Electron Microscopy Observation and Analysis [Measurement Method] Electron Microscopy Observation and Analysis
Vibrational spectroscopy Vibrational spectroscopy
Measurement Method: X-ray Diffraction Related Measurement Method: X-ray Diffraction Related
[Measurement Method] Related to SPM [Measurement Method] Related to SPM
Measurement Method: Failure Analysis Measurement Method: Failure Analysis
[Measurement Method] Other Measurement Methods [Measurement Method] Other Measurement Methods
Processing methods and treatment methods Processing methods and treatment methods
Other services and support information Other services and support information
[Analysis Case] LSI・Memory [Analysis Case] LSI・Memory
[Analysis Case] Optical Devices [Analysis Case] Optical Devices
[Analysis Case] Solar Cells [Analysis Case] Solar Cells
[Analysis Case] Fuel Cell [Analysis Case] Fuel Cell
[Analysis Case] Display [Analysis Case] Display
[Analysis Case] Oxide Semiconductors [Analysis Case] Oxide Semiconductors
[Analysis Case] Power Device [Analysis Case] Power Device
[Analysis Case] Electronic Components [Analysis Case] Electronic Components
[Analysis Case] Secondary Battery [Analysis Case] Secondary Battery
[Analysis Case] Lighting [Analysis Case] Lighting
[Analysis Case] Manufacturing Equipment and Components [Analysis Case] Manufacturing Equipment and Components
[Analysis Case] Biotechnology [Analysis Case] Biotechnology
[Analysis Case] Cosmetics [Analysis Case] Cosmetics
[Analysis Case] Food [Analysis Case] Food
[Analysis Case] Pharmaceuticals [Analysis Case] Pharmaceuticals
[Analysis Case] Medical Devices [Analysis Case] Medical Devices
Analysis Case: Daily Necessities Analysis Case: Daily Necessities
[Analysis Case] Environment [Analysis Case] Environment
[Analysis Case] Others [Analysis Case] Others
Materials from the exhibition where MST exhibited. Materials from the exhibition where MST exhibited.
[Analysis

[Analysis Case] Optical Devices

We will introduce examples of optical device analysis.

[Analysis Case] Preprocessing Technology for Specific Areas of Wafers and Chips

We will sample only the target area and produce samples without breaking the wafer.

We will extract small pieces from the wafer chip without breaking it and thin them down for high-resolution TEM observation and analysis. Furthermore, by cutting and preparing samples while leaving the areas to be analyzed, we will conduct TEM observation and analysis of the target areas from any desired direction and provide the data. Through advanced TEM sample preparation techniques, we will meet various observation, analysis, and evaluation needs.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

FIB low acceleration processing

FIB: Focused Ion Beam Processing

In the method for preparing thin film samples for TEM observation using FIB, high-energy Ga ions (acceleration voltage of 30 kV) are used, resulting in the formation of a damage layer on the processed surface, which causes a deterioration in the image quality of the TEM. By performing processing at a lower acceleration (2 kV) than conventional methods, the damage layer can be reduced, leading to improved image quality. By reducing the damage on the FIB processed surface through low-acceleration FIB processing, high-quality and reliable data can be obtained in TEM image observation and EELS measurements.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Impurity Concentration in AlGaN UV Sensors Using SIMS

A lineup of AlGaN standard samples with various Al compositions.

In SIMS analysis, it is essential to use standard samples with a composition close to that of the measurement sample in order to obtain more reliable concentration quantification values. By offering a wide range of AlGaN standard samples with varying Al content, we have been able to more accurately determine the impurity concentration in AlGaN, which is used in UV LEDs and UV sensors. We will present a case study where SIMS analysis of a UV sensor was conducted to quantify the concentration of the dopant, Si.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] SIMS Analysis of Compound Layered Structure Samples

Analysis is possible after selectively removing the compound layer through preprocessing.

In SIMS analysis of layered structure samples, there is a concern that in structures where the layer of interest is located at a deep position from the sample surface, the depth resolution may degrade due to the influence of the concentration distribution of the upper layers. In such cases, it is effective to remove the upper layers through pretreatment before analysis. This document presents an example of selectively and progressively removing layers from InP/InGaAs-based SHBT (Single Heterojunction Bipolar Transistor) samples.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Composition Analysis of GaN-based LED Structures using SIMS

Capable of evaluating the composition of the main elemental components of GaN-based LEDs in the depth direction.

In general, the quantification of major elements with concentrations exceeding a certain percentage in SIMS is considered to be low. However, by using the M Cs+ (M: element of interest) detection mode with Cs+ as the primary ion, it is possible to determine the compositional distribution of major element elements in the depth direction. An example of depth compositional evaluation for Al, Ga, and In in GaN-based LED structures is presented.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Composition and Thickness Evaluation of Ultra-Thin SiON Films

Estimation of film thickness using the average free path of photoelectrons.

For extremely thin films with a thickness of a few nanometers or less, such as natural oxide films on silicon wafers and silicon nitride thin films, we will measure the Si2p spectrum of the sample's surface. By performing waveform analysis on the obtained spectrum, we will determine the proportion of each bonding state and estimate the film thickness from this result and the average free path of photoelectrons (Equation 1).

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Ultra-Shallow Implant Profiles by SIMS

Evaluation of dopant distribution and junctions is possible even in extremely shallow regions.

The miniaturization of devices has increased the need for evaluating the depth distribution of impurities in extremely shallow regions. To conduct an accurate assessment, SIMS analysis using a primary ion beam with lower energy (below 1 keV) is required. Figure 1 shows examples of measurements of Si wafers implanted with BF2+ 1 keV, P+ 1 keV, and As+ 1 keV, using a primary ion beam energy of 250 eV to 300 eV.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Visualization of Strain at Heterojunction Interfaces in Compounds

Lattice image analysis using the FFTM method

The Fast Fourier Transform Mapping method is a technique that performs a Fourier transform on high-resolution TEM images to analyze and visualize the minute lattice distortions of crystals from the spot positions of the FFT pattern. Through FFTM analysis, it is possible to (1) analyze lattice distortions in the x and y directions of the image, (2) analyze lattice distortions in the crystal plane direction, (3) analyze the distribution of crystal plane spacing and crystal plane orientation, (4) display the data distribution as a histogram, and (5) detect distortions of 0.5% with a spatial resolution of 5 nm. An example of its application to compound heterojunction multilayer film samples is presented.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Composition and Impurity Distribution of ZnO Films by SIMS

Visualization of in-plane distribution through imaging SIMS analysis.

The uniformity of the film composition and the distribution of impurities, which are one of the elements in device creation, were evaluated using imaging SIMS analysis. Through data processing after measurement, we can obtain planar images (Figure 1), cross-sectional images (Figure 2), depth distribution profiles at arbitrary locations (Figures 3 and 4), and line profiles. From the distribution of constituent materials and impurities, we can gain information that leads to process and film quality improvements.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Component Identification of Foreign Substances Considering Thermal History

Proposal for the use of standard samples with aligned thermal history.

Polymeric materials such as polypropylene (PP) react with oxygen and moisture in the atmosphere when heated, causing changes in their molecular structure. Therefore, when foreign substances or contaminants may be present in polymeric materials, it is necessary to use standard materials processed in the same environment as the measurement sample for comparison data. To investigate how the PP standard material changes due to heat treatment (200°C for 30 minutes), FT-IR and TOF-SIMS measurements were conducted.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Depth Direction Analysis of Polyimide Components

Evaluation of the depth direction of surface modification layers of polymers, resins, and films using TOF-SIMS is possible.

Polyimide is a material that is used in various fields, including electronic components, due to its high heat resistance and excellent electrical insulation properties. Since surface modification can enhance adhesion to other materials, it is important to understand the state of the modified layer. In this study, TOF-SIMS measurements were conducted under sputtering conditions that minimize the degradation of organic components, allowing for the evaluation of polyimide components in the depth direction. Using GCIB (Ar cluster) for sputtering enables the measurement of the targeted organic components in the depth direction. *GCIB: Gas Cluster Ion Beam

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Film-Forming Component Encroachment on the Back Surface of the Wafer

Quantitative evaluation of metal components is possible near the bevel area.

In semiconductor device manufacturing, it is necessary to remove metals remaining on the backside of the wafer from the perspective of improving yield, and it is important to quantitatively understand the amount of metal components remaining. To investigate the concentration distribution of metals remaining on the backside within a range of 500 µm from the bevel area, we conducted evaluations using TOF-SIMS. TOF-SIMS has the spatial resolution to detect metal components only near the bevel area, and by using standard samples with known concentrations, it is possible to quantitatively calculate the concentrations.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Photoluminescence Analysis of White LEDs

Verification of the luminous characteristics of the chip and phosphor in white LEDs.

White LEDs have a long lifespan and are energy-efficient, leading to a rapid increase in demand in recent years, particularly for lighting applications. White LEDs emit light through a blue semiconductor chip, which then excites surrounding phosphors (mainly yellow) to produce white light. Therefore, in investigating the improvement of luminous characteristics and the causes of degradation, it is necessary to confirm the luminous characteristics of both the semiconductor chip and the phosphor. A micro photoluminescence (PL) device can confirm the luminous characteristics by targeting small areas.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Si Natural Oxidation Film Thickness

Estimation of film thickness using the average free path of photoelectrons.

We will introduce a case where the thickness of extremely thin films, such as natural oxide films on silicon wafers and silicon nitride thin films, which are less than a few nanometers thick, was calculated using XPS analysis. By measuring the Si2p spectrum of the surface of the Si wafer and performing waveform analysis on the obtained spectrum, we can determine the ratio of the presence of each bonding state, and from this result, it is possible to estimate the film thickness based on the average free path of photoelectrons (Equation 1). XPS allows for non-destructive and simple calculation of thin film thickness on substrates as broad average information.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Diffusion Evaluation of Ga and Al in Si Substrate using SSDP-SIMS

Measurement avoiding the influence of high concentration layers using SSDP-SIMS.

From the perspective of cost reduction, the use of high-resistance Si substrates for power devices made of GaN is expected. However, it is said that if Al and Ga diffuse to the surface of the Si substrate during high-temperature film formation, a low-resistance layer is formed, leading to leakage. Therefore, we will introduce a case where SIMS analysis was conducted to evaluate the presence or absence of Al and Ga diffusion into the Si substrate. To accurately assess trace diffusion, measurements were conducted from the Si substrate side towards the GaN layer.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] SSDP-SIMS Analysis of Mg in GaN-based LED Structure

It is possible to obtain the impurity profile in the GaN-based LED structure from the backside.

In GaN-based LEDs, it is said that the diffusion of the dopant element Mg into the active layer leads to a decrease in luminous efficiency. This document presents a case study where SIMS analysis was conducted on GaN-based LED structural samples from both the surface side and the sapphire substrate side (back side) to evaluate the depth profile of Mg concentration.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Composition Analysis of Compound Semiconductors by SIMS

Capable of evaluating the composition of the main elemental components of compound semiconductors in the depth direction.

Generally, in SIMS, the quantification of major elements with concentrations exceeding a certain percentage is considered to be low. However, by using the M Cs+ (M: target element) detection mode with Cs+ as the primary ion, it is possible to determine the compositional distribution of major elements in the depth direction. An example of depth compositional evaluation for Al and Ga in AlGaAs is presented.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Emission and Heat Generation Analysis of GaN-based Devices

Proposal for evaluation of breakdown voltage of GaN-based devices and surface heat distribution assessment.

We will introduce two measurement examples of effective failure analysis methods for GaN-based LEDs and high-frequency devices. By conducting lock-in thermal analysis on LED elements, it is possible to visualize the presence and timing of heat generation associated with light emission, allowing for the identification of specific areas that exhibit unique behaviors or characteristics. By performing emission microscopy observation on high-voltage, high-frequency devices, it is possible to capture the light emission associated with breakdown and identify areas with issues related to voltage resistance.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Precautions for Low-Temperature Photoluminescence Measurement

Photoluminescence method

- Photoluminescence measurement (PL measurement) can be conducted not only at room temperature but also by placing the sample in a cryostat for low-temperature measurements. Low-temperature measurements tend to show an increase in peak intensity and a decrease in peak full width at half maximum compared to room temperature measurements, which may provide insights into various energy levels. - Below, we will explain the precautions for low-temperature measurements and the differences in spectral shapes between room temperature and low-temperature measurements.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Composition and Bonding State of GaN Film by XPS

Evaluation will be conducted under measurement conditions tailored to the purpose.

This text introduces an example of evaluating the composition and bonding states of GaN films used in LEDs and power devices using XPS. Understanding how the composition and bonding states change due to film formation conditions and surface treatments is effective for process management. It is important to appropriately select the X-rays used during the evaluation according to the purpose. Measurement conditions for each focus will also be presented.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Removal of Organic Contaminants by Etching

We will remove surface contamination and conduct an evaluation using XPS.

XPS is a surface-sensitive technique, so carbon derived from organic contaminants due to the atmosphere is detected at a significant level. Reducing the influence of this carbon from organic contaminants is important for evaluating the original composition of the film. Typically, Ar ion sputtering is used to remove organic contaminants, but damage caused by sputtering may prevent the evaluation of the film's original composition and bonding states. We present an example where the influence of carbon from organic contaminants was reduced by removing the surface oxide layer using wet etching instead of Ar ion sputtering.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Valence evaluation of metal oxides by chemical shift

XPS: X-ray Photoelectron Spectroscopy

In XPS analysis, the binding state evaluation of the material surface is conducted by observing the energy of photoelectrons obtained through X-ray irradiation. It allows for the assessment of whether metal elements are in an oxidized state, and for elements with significant energy shifts (chemical shifts) due to oxidation, it also enables the evaluation of the presence and proportion of multiple valences. Below are the main metal elements and oxides for which multiple valence evaluations are possible.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Types and Characteristics of Electron Diffraction

TEM: Transmission Electron Microscopy

The electron diffraction method using an electron microscope is classified into three types based on the way the electron beam is incident on the sample. The characteristics of each type and examples of data are presented. It is necessary to choose the appropriate method according to the size of the evaluation object and the analysis purpose.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Carrier Distribution in Near-Infrared VCSEL Using SMM

We can consistently perform everything from disassembly and processing of the implemented product to measurement of the diffusion layer.

We disassembled a near-infrared VCSEL (vertical-cavity surface-emitting laser) implementation to extract a tiny chip, and after cross-section processing, we conducted SMM measurements. A high-resistance current confinement layer was observed surrounding the aperture of the VCSEL. Additionally, near the active layer, films of different materials were stacked, and this composition was measured as a contrast. Contrast was also confirmed within layers of the same composition, which is believed to reflect differences in carrier concentration and band bending.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Polarity Evaluation of GaN by ABF-STEM Observation

Atomic-level observation is possible with the Cs collector-equipped STEM.

GaN, which is being utilized as a power device and optical device, has a hexagonal wurtzite structure and exhibits crystallographic asymmetry (Ga polarity and N polarity) in the c-axis direction. The growth processes of epitaxial films differ between Ga polarity and N polarity, and the surface physical properties and chemical reactivity of the crystal also vary. In this document, the polarity of GaN was evaluated through annular bright field (ABF)-STEM observation. As a result, the positions of the Ga sites and N sites were identified, allowing for a visual clarification of the characteristics of Ga polarity and N polarity. Measurement method: TEM Product fields: Power devices, optical devices Analysis objectives: Shape evaluation, structural evaluation, thickness evaluation For more details, please download the document or contact us.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of the Condition of Foreign Matter with Surface Oxidation Film

Evaluation of aluminum hydroxide Al(OH)3 and aluminum oxide Al2O3 is possible.

If you want to qualitatively evaluate metallic foreign substances, analyzing only the very surface may result in information about the oxide film present on the surface of the foreign substance, and you may not obtain information about the foreign substance itself. By performing depth analysis using TOF-SIMS, it is possible to evaluate the composition and state of the foreign substance located deeper than the oxide film. This document presents case studies evaluating the state of three locations that are believed to contain aluminum-based foreign substances.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Contamination Assessment of Si Wafer Bevel Area

It is possible to evaluate both metal components and organic components simultaneously.

In semiconductor device manufacturing, from the perspective of improving yield, it is necessary to enhance the cleanliness of the backside of the wafer and to remove substances that remain on the bevel area of the wafer. In this study, we conducted TOF-SIMS analysis of the bevel inclined surface to evaluate the distribution of contamination (Figure 2). Additionally, by comparing the mass spectra of the adhered substances with those of the normal area and the contamination source, we found that the adhered substances matched the metal (Cr) and organic components of the contamination source. TOF-SIMS can capture the contamination generation process in the bevel area (edge and inclined surface).

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Comprehensive Evaluation of Lighting Emitting Devices

We will conduct analysis of various materials, including the disassembly of LEDs, phosphors, and LED chips.

We will disassemble commercially available LED lighting, conduct composition analysis of each material, identify defects, perform physical analysis, and analyze impurities for energy-saving key devices.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Diffusion Layer Shape of Image Sensors Using SCM

We provide consistent support from sample disassembly to measurement.

This document presents case studies evaluating the diffusion layer of image sensors in smartphones. Using a scanning capacitance microscope (SCM) capable of determining the p/n type of semiconductors, we assessed the distribution of the diffusion layer. By combining the results from cross-sectional and planar SCM, we obtained complementary and extensive information. SCM is one of the effective tools for evaluating the quality of image sensor diffusion layers and for failure analysis.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Comprehensive Evaluation of CMOS Sensors

Reverse engineering of smartphone components

We will introduce a case where lenses and CMOS sensor chips were extracted from commercially available smartphones and evaluated. Depending on the purpose, we created flat and cross-sectional surfaces through polishing and FIB processing, and confirmed the layered structure and layers using TEM and SEM. Furthermore, we identified the types of films using EDX. At MST, we can handle everything from disassembly to analysis in a consistent manner.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] STEM/EDX and Image Simulation for Crystal Structure Evaluation

The evaluation of the crystal structure can be performed based on the STEM images and the results of atomic composition measurements.

By measuring the sample, it is possible to evaluate the crystal structure through the combination of results obtained and simulations. This document introduces a case study in which the crystal structure is discussed by comparing the results obtained from HAADF-STEM and EDX measurements on polycrystalline neodymium magnets with simulated images using the respective measurement conditions. The combination of measurement results and computational simulation results allows for a deeper understanding of the crystal structure.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Component Analysis of Water Repellent Areas

TOF-SIMS enables wide-area imaging evaluation of multiple components.

To investigate the causes of defects such as poor adhesion, it is important to gain insights into the surfaces of wafers and devices. In this instance, hydrophobic areas were observed on a silicon wafer, prompting wide-area imaging using TOF-SIMS. As a result, components estimated to be silicone oil, CF-based grease, and paraffin oil were identified from the hydrophobic areas. TOF-SIMS typically has a measurement field of view up to 500μm square, but by moving the stage during measurement, it is possible to evaluate wide-area distributions. Measurement method: TOF-SIMS Product fields: Devices, Displays, Electronic Components, Manufacturing Equipment Analysis objectives: Qualitative, Imaging, Composition Distribution Evaluation For more details, please download the materials or contact us.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Depth Profile Concentration Analysis of Mg in Deep Ultraviolet LEDs

Quantification of impurities in AlGaN with various Al compositions is possible.

To determine impurity concentrations using SIMS analysis, it is necessary to use a standard sample with the same composition as the analysis sample. By preparing various Al compositions of AlGaN standard samples for AlGaN used in ultraviolet LEDs and power devices, MST can achieve more accurate quantification of impurities. We will introduce a case where, after disassembling a commercially available deep ultraviolet LED, SIMS analysis was conducted to determine the concentration of the dopant Mg and the distribution of the main component Al composition. Measurement method: SIMS Product fields: Lighting, power devices, optical devices Analysis purposes: Trace concentration evaluation, impurity evaluation, distribution evaluation, product investigation For more details, please download the materials or contact us.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

List of reliability tests

Reliability Test

Environmental Testing Evaluates the resistance of electronic components and devices when subjected to environmental stress. Reliability Evaluation Testing Assesses items related to the reliability and safety of the product.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] STEM, EBSD Image Simulation for Polycrystalline Structure Analysis

Evaluation of crystal forms using simulations.

High-resolution HAADF-STEM images reflect the atomic arrangement of crystals, and by simulating STEM images corresponding to various crystal orientations, they help in accurately understanding the relative orientations between crystal grains and the observed images in polycrystalline materials. This document presents a case where STEM images were simulated from the crystal orientation information obtained by the EBSD method for the crystal grains in a polycrystalline neodymium magnet, and compares them with actual high-resolution HAADF-STEM images.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Analysis Case] Evaluation of Metal Impurities in the Metal Film and Interface of the Device

Impurities in films and interfaces such as plating can be evaluated using TOF-SIMS.

Impurities from components of the film formation device, target materials, and plating solutions can contaminate the device and have adverse effects, making the qualitative assessment of impurities on surfaces, within films, and at interfaces important. TOF-SIMS can sensitively evaluate unknown elements present on surfaces, within films, and at interfaces in a single measurement due to the following three characteristics: 1. For metallic elements, ions from m/z 1 to 800 can be detected simultaneously in one measurement. 2. Detection sensitivity of a few ppm can be achieved (varies depending on materials and ions). 3. The use of a sputter gun allows for the evaluation of depth distribution.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Prev 1 Next
  • 大型品の切削や低コストな複合加工に。ロボットシステムの資料進呈

    大型品の切削や低コストな複合加工に。ロボットシステムの資料進呈

  • PFAS規制に対応 PFASフリー コーティング剤 ・潤滑性を付与 摩擦低減、耐摩耗性向上 ・離型性を付与 撥水・撥油性、非粘着 など、多様の用途で提案が可能 素材は、金属・プラスチック・ゴムなど問いません!
  • 3Dデータ活用WEBセミナー iCAD Technical Fair 10th 人手不足を解消! 設計製造DXの取組 最新3D活用を徹底解説 設計リードタイム1/2!生産性の向上 60日間で実現した2D→3D設計移行 1つのデータを全部門で使い倒す!
    • Contact this company

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.